
On the Eigenvalues of Operators with Gaps. Application to Dirac Operators
Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2000), On the Eigenvalues of Operators with Gaps. Application to Dirac Operators, Journal of Functional Analysis, 174, 1, p. 208-226. http://dx.doi.org/10.1006/jfan.1999.3542
View/ Open
Type
Article accepté pour publication ou publiéDate
2000Journal name
Journal of Functional AnalysisVolume
174Number
1Publisher
Elsevier
Pages
208-226
Publication identifier
Metadata
Show full item recordAbstract (EN)
This paper is devoted to a general min-max characterization of the eigenvalues in a gap of the essential spectrum of a self-adjoint unbounded operator. We prove an abstract theorem, then we apply it to the case of Dirac operators with a Coulomb-like potential. The result is optimal for the Coulomb potential.Subjects / Keywords
variational methods; self-adjoint operators; quadratic forms; spectral gaps; eigenvalues; min-max; Rayleigh–Ritz quotients; Dirac operators; Hardy's inequalityRelated items
Showing items related by title and author.
-
Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2006) Article accepté pour publication ou publié
-
Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2023) Article accepté pour publication ou publié
-
Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2023) Article accepté pour publication ou publié
-
Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2000) Communication / Conférence
-
Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2000) Article accepté pour publication ou publié