Show simple item record

dc.contributor.authorDolbeault, Jean
HAL ID: 87
ORCID: 0000-0003-4234-2298
dc.contributor.authorEsteban, Maria J.
HAL ID: 738381
ORCID: 0000-0003-1700-9338
dc.contributor.authorSéré, Eric
HAL ID: 171149
dc.date.accessioned2011-05-30T08:40:53Z
dc.date.available2011-05-30T08:40:53Z
dc.date.issued2000
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/6347
dc.language.isoenen
dc.subjectvariational methodsen
dc.subjectself-adjoint operatorsen
dc.subjectquadratic formsen
dc.subjectspectral gapsen
dc.subjecteigenvaluesen
dc.subjectmin-maxen
dc.subjectRayleigh–Ritz quotientsen
dc.subjectDirac operatorsen
dc.subjectHardy's inequalityen
dc.subject.ddc515en
dc.titleOn the Eigenvalues of Operators with Gaps. Application to Dirac Operatorsen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenThis paper is devoted to a general min-max characterization of the eigenvalues in a gap of the essential spectrum of a self-adjoint unbounded operator. We prove an abstract theorem, then we apply it to the case of Dirac operators with a Coulomb-like potential. The result is optimal for the Coulomb potential.en
dc.relation.isversionofjnlnameJournal of Functional Analysis
dc.relation.isversionofjnlvol174en
dc.relation.isversionofjnlissue1en
dc.relation.isversionofjnldate2000
dc.relation.isversionofjnlpages208-226en
dc.relation.isversionofdoihttp://dx.doi.org/10.1006/jfan.1999.3542en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherElsevieren
dc.subject.ddclabelAnalyseen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record