Wavelets bases adapted to a self-similar quasicrystal
Bernuau, Guillaume (1998), Wavelets bases adapted to a self-similar quasicrystal, Journal of Mathematical Physics, 39, p. n°4213. http://dx.doi.org/10.1063/1.532492
Type
Article accepté pour publication ou publiéDate
1998Journal name
Journal of Mathematical PhysicsVolume
39Publisher
American Institute of Physics
Pages
n°4213
Publication identifier
Metadata
Show full item recordAuthor(s)
Bernuau, GuillaumeAbstract (EN)
Given any self-similar quasicrystal Λ in Rn with inflation θ>1, we construct bases of L2(Rn) having the following structure: θnj/2ψλ(θjx−λ), λ ∊ ΛθΛ, j ∊ Z, where the mother wavelets ψλ, λ ∊ ΛθΛ, are smooth and with exponential decay or compact support. We also show that wavelets ψλ constitute a relatively compact set in some Sobolev space and that they depend continuously on λ when Λ is equipped with an appropriate topology.Subjects / Keywords
quasicrystals; wavelet transforms; set theoryRelated items
Showing items related by title and author.
-
Haas, Bénédicte (2010) Article accepté pour publication ou publié
-
Mischler, Stéphane; Cañizo, José Alfredo; Caceres, Maria J. (2011) Article accepté pour publication ou publié
-
Mouhot, Clément; Mischler, Stéphane (2006) Article accepté pour publication ou publié
-
Haas, Bénédicte; Miermont, Grégory (2004) Article accepté pour publication ou publié
-
Goldschmidt, Christina; Haas, Bénédicte (2010) Article accepté pour publication ou publié