Show simple item record

dc.contributor.authorAubin, Jean-Pierre
dc.contributor.authorCatté, Francine
dc.date.accessioned2011-05-30T12:25:29Z
dc.date.available2011-05-30T12:25:29Z
dc.date.issued2002
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/6365
dc.language.isoenen
dc.subjectviability kernelen
dc.subjectcapture basinen
dc.subjectdiscriminating kernelen
dc.subjectMatheron Theoremen
dc.subjectSaint-Pierre viability kernel algorithmen
dc.subjectCardaliaguet discriminating kernel algorithmen
dc.subjectopeningsen
dc.subjectclosingsen
dc.subjectGalois transformen
dc.subject.ddc519en
dc.titleBilateral Fixed-Points and Algebraic Properties of Viability Kernels and Capture Basins of Setsen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenMany concepts of viability theory such as viability or invariance kernels and capture or absorption basins under discrete multivalued systems, differential inclusions and dynamical games share algebraic properties that provide simple – yet powerful – characterizations as either largest or smallest fixed points or unique minimax (or bilateral fixed-point) of adequate maps defined on pairs of subsets. Further, important algorithms such as the Saint-Pierre viability kernel algorithm for computing viability kernels under discrete system and the Cardaliaguet algorithm for characterizing lsquodiscriminating kernelsrsquo under dynamical games are algebraic in nature. The Matheron Theorem as well as the Galois transform find applications in the field of control and dynamical games allowing us to clarify concepts and simplify proofs.en
dc.relation.isversionofjnlnameSet-Valued Analysis
dc.relation.isversionofjnlvol10en
dc.relation.isversionofjnlissue4en
dc.relation.isversionofjnldate2002
dc.relation.isversionofjnlpages379-416en
dc.relation.isversionofdoihttp://dx.doi.org/10.1023/A:1020667819804en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherSpringeren
dc.subject.ddclabelProbabilités et mathématiques appliquéesen


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record