
Monotonicity up to radially symmetric cores of positive solutions to nonlinear elliptic equations: local moving planes and unique continuation in a non-Lipschitz case
Felmer, Patricio; Dolbeault, Jean (2004), Monotonicity up to radially symmetric cores of positive solutions to nonlinear elliptic equations: local moving planes and unique continuation in a non-Lipschitz case, Nonlinear Analysis: Theory, Methods & Applications, 58, 3-4, p. 299-317. http://dx.doi.org/10.1016/j.na.2004.04.007
View/ Open
Type
Article accepté pour publication ou publiéDate
2004Journal name
Nonlinear Analysis: Theory, Methods & ApplicationsVolume
58Number
3-4Publisher
Elsevier
Pages
299-317
Publication identifier
Metadata
Show full item recordAbstract (EN)
We prove local monotonicity and symmetry properties for nonnegative solutions of scalar field equations with nonlinearities which are not Lipschitz. Our main tools are a local moving plane method and a unique continuation argument.Subjects / Keywords
Dead cores; Cores; Local symmetry; Unique continuation; Hopf's lemma; Maximum principle; Comparison techniques; Non-Lipschitz nonlinearities; Positivity; Symmetry; Monotonicity; Scalar field equations; Elliptic equationsRelated items
Showing items related by title and author.
-
Dolbeault, Jean (1999) Document de travail / Working paper
-
Dolbeault, Jean; Felmer, Patricio (2000) Article accepté pour publication ou publié
-
Esteban, Maria J.; Dolbeault, Jean (2014) Article accepté pour publication ou publié
-
Dolbeault, Jean; Garcia-Huidobro, Marta; Manásevich, Raul (2023) Document de travail / Working paper
-
Dolbeault, Jean; Felmer, Patricio; Monneau, Régis (2005) Article accepté pour publication ou publié