
On a Liouville type theorem for isotropic homogeneous fully nonlinear elliptic equations in dimension two
Dolbeault, Jean; Monneau, Régis (2003), On a Liouville type theorem for isotropic homogeneous fully nonlinear elliptic equations in dimension two, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze, 2, 1, p. 181-197
Type
Article accepté pour publication ou publiéExternal document link
http://www.numdam.org/item?id=ASNSP_2003_5_2_1_181_0Date
2003Journal name
Annali della Scuola Normale Superiore di Pisa. Classe di ScienzeVolume
2Number
1Publisher
Scuola Normale Superiore di Pisa
Pages
181-197
Metadata
Show full item recordAbstract (EN)
In this paper we establish a Liouville type theorem for fully nonlinear elliptic equations related to a conjecture of De Giorgi in R2. We prove that if the level lines of a solution have bounded curvature, then these level lines are straight lines. As a consequence, the solution is one-dimensional. The method also provides a result on free boundary problems of Serrin type.Subjects / Keywords
Fully nonlinear elliptic equations; semilinear elliptic equations; Quasi-linear elliptic equations; One-dimensional symmetry; Conjecture of De Giorgi; Liouville Theorem; Bernstein’s Problem; Serrin’s ProblemRelated items
Showing items related by title and author.
-
Dolbeault, Jean; Monneau, Régis (2002) Article accepté pour publication ou publié
-
Dolbeault, Jean; Esteban, Maria J.; Tarantello, Gabriella (2008) Article accepté pour publication ou publié
-
Benguria, Rafael; Dolbeault, Jean; Monneau, Régis (2009) Article accepté pour publication ou publié
-
Lions, Pierre-Louis (1989) Article accepté pour publication ou publié
-
Da Lio, Francesca; Lions, Pierre-Louis; Barles, Guy; Souganidis, Panagiotis E. (2008) Article accepté pour publication ou publié