Large deviations in estimation of an Ornstein-Uhlenbeck model
Pham, Huyen; Florens, Danielle (1999), Large deviations in estimation of an Ornstein-Uhlenbeck model, Journal of Applied Probability, 36, 1, p. 60-77. http://dx.doi.org/10.1239/jap/1032374229
Type
Article accepté pour publication ou publiéDate
1999Journal name
Journal of Applied ProbabilityVolume
36Number
1Publisher
Applied Probability Trust
Pages
60-77
Publication identifier
Metadata
Show full item recordAbstract (EN)
A large deviation principle (LDP) with an explicit rate function is proved for the estimation of drift parameter of the Ornstein-Uhlenbeck process. We establish an LDP for two estimating functions, one of them being the score function. The first one is derived by applying the Gärtner-Ellis theorem. But this theorem is not suitable for the LDP on the score function and we circumvent this key point by using a parameter-dependent change of measure. We then state large deviation principles for the maximum likelihood estimator and another consistent drift estimator.Subjects / Keywords
Large deviations; rate function; Ornstein-Uhlenbeck diffusion process; drift estimationRelated items
Showing items related by title and author.
-
Pham, Huyen; Florens, Danielle (1999) Article accepté pour publication ou publié
-
Florens, Danielle; Pham, Huyen (1998) Article accepté pour publication ou publié
-
Benabou, Gaël (2006) Article accepté pour publication ou publié
-
Lehec, Joseph (2016) Article accepté pour publication ou publié
-
Florens, Danielle (1999) Document de travail / Working paper