Quaternionic linear fractional transformations and direct isometries of H5
Moussafir, Jacques-Olivier (2001), Quaternionic linear fractional transformations and direct isometries of H5, Journal of Geometry and Physics, 37, 3, p. 183-189. http://dx.doi.org/10.1016/S0393-0440(99)00052-2
Type
Article accepté pour publication ou publiéDate
2001Journal name
Journal of Geometry and PhysicsVolume
37Number
3Publisher
Elsevier
Pages
183-189
Publication identifier
Metadata
Show full item recordAuthor(s)
Moussafir, Jacques-OlivierAbstract (EN)
In the complex plane, an even number of reflection through lines or circles can be expressed in complex coordinates as a linear fractional transformation w=(az+b)/(cz+d) with Image and ad−bc≠0. This also holds in Image : an even number of reflections through spheres or planes correspond to transformations k=(ah+b)(ch+d)−1 with Image . A theorem by Poincaré about direct isometries of hyperbolic spaces may therefore be rephrased: direct isometries of H5 correspond to quaternionic linear fractional transformations.Subjects / Keywords
Quaternions; Isometries; Transformations; Differential geometryRelated items
Showing items related by title and author.
-
Charron, Jacques-Olivier (2013-07) Communication / Conférence
-
Moussafir, Jacques-Olivier (2000) Article accepté pour publication ou publié
-
Charron, Jacques-Olivier (2013) Article accepté pour publication ou publié
-
Charron, Jacques-Olivier (2015-04) Article accepté pour publication ou publié
-
Charron, Jacques-Olivier (2013-06) Communication / Conférence