• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

A New Variational Principle for a Nonlinear Dirac Equation on the Schwarzschild Metric

Paturel, Eric (2000), A New Variational Principle for a Nonlinear Dirac Equation on the Schwarzschild Metric, Communications in Mathematical Physics, 213, 2, p. 249-266. http://dx.doi.org/10.1007/s002200000243

View/Open
99-282.ps (517.9Kb)
Type
Article accepté pour publication ou publié
Date
2000
Journal name
Communications in Mathematical Physics
Volume
213
Number
2
Publisher
Springer
Pages
249-266
Publication identifier
http://dx.doi.org/10.1007/s002200000243
Metadata
Show full item record
Author(s)
Paturel, Eric
Abstract (EN)
In this paper, we prove the existence of infinitely many solutions of a stationary nonlinear Dirac equation on the Schwarzschild metric, outside a massive ball. These solutions are the critical points of a strongly indefinite functional. Thanks to a concavity property, we are able to construct a reduced functional, which is no longer strongly indefinite. We find critical points of this new functional using the Symmetric Mountain Pass Lemma. Note that, as A. Bachelot-Motet conjectured, these solutions vanish as the radius of the massive ball tends to the horizon radius of the metric.
Subjects / Keywords
nonlinear Dirac equation

Related items

Showing items related by title and author.

  • Thumbnail
    Stationary states of the nonlinear Dirac equation: A variational approach 
    Esteban, Maria J.; Séré, Eric (1995) Article accepté pour publication ou publié
  • Thumbnail
    An overview on the standing waves of nonlinear Schroedinger and Dirac equations on metric graphs with localized nonlinearity 
    Borrelli, William; Carlone, Raffaele; Tentarelli, Lorenzo (2019) Document de travail / Working paper
  • Thumbnail
    On the nonlinear Dirac equation on noncompact metric graphs 
    Borrelli, William; Carlone, Raffaele; Tentarelli, Lorenzo (2019) Document de travail / Working paper
  • Thumbnail
    Variational Methods in Relativistic Quantum Mechanics: New Approach to the Computation of Dirac Eigenvalues 
    Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2000) Communication / Conférence
  • Thumbnail
    A max-min principle for the ground state of the Dirac-Fock functional 
    Séré, Eric; Esteban, Maria J. (2002) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo