A New Variational Principle for a Nonlinear Dirac Equation on the Schwarzschild Metric
Paturel, Eric (2000), A New Variational Principle for a Nonlinear Dirac Equation on the Schwarzschild Metric, Communications in Mathematical Physics, 213, 2, p. 249-266. http://dx.doi.org/10.1007/s002200000243
View/ Open
Type
Article accepté pour publication ou publiéDate
2000Journal name
Communications in Mathematical PhysicsVolume
213Number
2Publisher
Springer
Pages
249-266
Publication identifier
Metadata
Show full item recordAuthor(s)
Paturel, EricAbstract (EN)
In this paper, we prove the existence of infinitely many solutions of a stationary nonlinear Dirac equation on the Schwarzschild metric, outside a massive ball. These solutions are the critical points of a strongly indefinite functional. Thanks to a concavity property, we are able to construct a reduced functional, which is no longer strongly indefinite. We find critical points of this new functional using the Symmetric Mountain Pass Lemma. Note that, as A. Bachelot-Motet conjectured, these solutions vanish as the radius of the massive ball tends to the horizon radius of the metric.Subjects / Keywords
nonlinear Dirac equationRelated items
Showing items related by title and author.
-
Esteban, Maria J.; Séré, Eric (1995) Article accepté pour publication ou publié
-
Borrelli, William; Carlone, Raffaele; Tentarelli, Lorenzo (2019) Document de travail / Working paper
-
Borrelli, William; Carlone, Raffaele; Tentarelli, Lorenzo (2019) Document de travail / Working paper
-
Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2000) Communication / Conférence
-
Séré, Eric; Esteban, Maria J. (2002) Communication / Conférence