Max-multiflow/min-multicut for G+H series-parallel
Cornaz, Denis (2011), Max-multiflow/min-multicut for G+H series-parallel, Discrete Mathematics, 311, 17, p. 1957-1967. http://dx.doi.org/10.1016/j.disc.2011.05.025
Type
Article accepté pour publication ou publiéDate
2011Journal name
Discrete MathematicsVolume
311Number
17Publisher
Elsevier
Pages
1957-1967
Publication identifier
Metadata
Show full item recordAuthor(s)
Cornaz, DenisAbstract (EN)
We give a new characterization of series-parallel graphs which implies that the maximum integer multiflow is equal to the minimum capacity multicut if G + H is series-parallel, where G + H denotes the union of the support graph G and the demand graph H. We investigate the difference between a result of the type ‘‘the cut-condition is sufficient for the existence of a multiflow in some class’’ and a result of the type ‘‘max- multiflow = min-multicut for some class’’.Subjects / Keywords
Min-max equality; Minimum multicut; Maximum integer multiflowRelated items
Showing items related by title and author.
-
Cornaz, Denis; Grappe, Roland; Lacroix, Mathieu (2019) Article accepté pour publication ou publié
-
Séré, Eric; Esteban, Maria J. (2002) Communication / Conférence
-
Esteban, Maria J.; Lewin, Mathieu; Séré, Eric (2019) Article accepté pour publication ou publié
-
Aissi, Hassene; Bazgan, Cristina; Vanderpooten, Daniel (2005) Communication / Conférence
-
Esteban, Maria J.; Lewin, Mathieu; Séré, Eric (2021) Article accepté pour publication ou publié