Large Scale Disk-Based Metric Indexing Structure Approximate Information Retrieval by Content
dc.contributor.author | Rukoz, Marta | |
dc.contributor.author | Gouet-Brunet, Valérie
HAL ID: 170517 ORCID: 0000-0003-3666-5146 | |
dc.contributor.author | Barton, Stanislav | |
dc.date.accessioned | 2011-06-20T12:19:52Z | |
dc.date.available | 2011-06-20T12:19:52Z | |
dc.date.issued | 2011 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/6540 | |
dc.language.iso | en | en |
dc.subject | Approximate Information Retrieval | en |
dc.subject | large scalability | en |
dc.subject | index structures | en |
dc.subject.ddc | 005.7 | en |
dc.title | Large Scale Disk-Based Metric Indexing Structure Approximate Information Retrieval by Content | en |
dc.type | Communication / Conférence | |
dc.contributor.editoruniversityother | POND University;France | |
dc.contributor.editoruniversityother | CNAM/CEDRIC;France | |
dc.description.abstracten | In order to achieve large scalability, indexing structures are usually distributed to incorporate more of expensive main memory during the query processing. In this paper, an in- dexing structure, that does not su er from a performance degradation by its transition from main memory storage to hard drive, is proposed. The high e ciency of the index is achieved using a very e ective pruning based on precom- puted distances and so called locality phenomenon which substantially diminishes the number of retrieved candidates. The trade-o s for the large scalability are, rstly, the ap- proximation and, secondly, longer query times, yet both are still bearable enough for recent multimedia content-based search systems, proved by an evaluation using visual and audio data and both metric and semi-metric distance func- tions. The tuning of the index's parameters based on the analysis of the particular's data intrinsic dimensionality is also discussed. | en |
dc.identifier.citationpages | 2-7 | en |
dc.relation.ispartoftitle | EDBT/ICDT '11 | en |
dc.relation.ispartofeditor | Stefanova, Silvia | |
dc.relation.ispartofeditor | Orsborn, Kjell | |
dc.relation.ispartofeditor | Deepak, P | |
dc.relation.ispartofeditor | Deshpande, Prasad | |
dc.relation.ispartofpublname | ACM | en |
dc.relation.ispartofpublcity | New York | en |
dc.relation.ispartofdate | 2011 | |
dc.relation.ispartofpages | 36 | en |
dc.description.sponsorshipprivate | oui | en |
dc.subject.ddclabel | Organisation des données | en |
dc.relation.ispartofisbn | 978-1-4503-0612-6 | en |
dc.relation.conftitle | 1st Workshop on New Trends in Similarity Search (NTSS’11), in conjunction with the EDBT 2011 Confere | en |
dc.relation.confdate | 2011-03 | |
dc.relation.confcity | Uppsala | en |
dc.relation.confcountry | Suède | en |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |