Total Variation Minimization for Scalar/Vector Regularization
dc.contributor.author | Dibos, Françoise | |
dc.contributor.author | Koepfler, Georges | |
dc.contributor.author | Monasse, Pascal
HAL ID: 172809 ORCID: 0000-0001-9167-7882 | |
dc.date.accessioned | 2011-06-23T15:34:33Z | |
dc.date.available | 2011-06-23T15:34:33Z | |
dc.date.issued | 2003 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/6590 | |
dc.language.iso | en | en |
dc.subject | Fast Level Sets Transform (FLST) | en |
dc.subject | level sets | en |
dc.subject | Total Variation (TV) minimization | en |
dc.subject.ddc | 519 | en |
dc.title | Total Variation Minimization for Scalar/Vector Regularization | en |
dc.type | Chapitre d'ouvrage | |
dc.description.abstracten | In this chapter we present regularization by using Total Variation (TV) minimization based on a level set approach. After introducing the problem of regularization and citing related work, we introduce our main tool, the Fast Level Sets Transform (FLST). This algorithm decomposes an image in a tree of shapes which gives us a non-redundant and complete representation of the image. This representation, associated to some theoretical facts about functions of bounded variation, leads us to a TV minimization algorithm based on level sets. We conclude by comparing this approach to other implementation and/or other models and show applications to regularization of gray scale and color images, as well as optical flow. | en |
dc.identifier.citationpages | 121-140 | en |
dc.relation.ispartoftitle | Geometric Level Set Methods in Imaging, Vision, and Graphics | en |
dc.relation.ispartofeditor | Osher, Stanley | |
dc.relation.ispartofeditor | Paragios, Nikos | |
dc.relation.ispartofpublname | Springer | en |
dc.relation.ispartofpublcity | Berlin | en |
dc.relation.ispartofdate | 2003 | |
dc.relation.ispartofpages | 513 | en |
dc.relation.ispartofurl | http://dx.doi.org/10.1007/b97541 | en |
dc.description.sponsorshipprivate | oui | en |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |
dc.relation.ispartofisbn | 978-0-387-95488-2 | en |
dc.identifier.doi | http://dx.doi.org/10.1007/0-387-21810-6_7 |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |