
Minimum variance importance sampling via Population Monte Carlo
Douc, Randal; Guillin, Arnaud; Marin, Jean-Michel; Robert, Christian P. (2007), Minimum variance importance sampling via Population Monte Carlo, ESAIM. Probability and Statistics, 11, p. 427-447. http://dx.doi.org/10.1051/ps:2007028
View/ Open
Type
Article accepté pour publication ou publiéDate
2007Journal name
ESAIM. Probability and StatisticsVolume
11Publisher
Cambridge University Press
Pages
427-447
Publication identifier
Metadata
Show full item recordAbstract (EN)
Variance reduction has always been a central issue in Monte Carlo experiments. Population Monte Carlo can be used to this effect, in that a mixture of importance functions, called a D-kernel, can be iteratively optimized to achieve the minimum asymptotic variance for a function of interest among all possible mixtures. The implementation of this iterative scheme is illustrated for the computation of the price of a European option in the Cox-Ingersoll-Ross model. A Central Limit theorem as well as moderate deviations are established for the D-kernel Population Monte Carlo methodology.Subjects / Keywords
Adaptivity; Cox-Ingersoll-Ross model; Euler scheme; importance sampling; mathematical finance; mixtures; moderate deviations; population Monte Carlo; variance reductionRelated items
Showing items related by title and author.
-
Cappé, Olivier; Douc, Randal; Guillin, Arnaud; Marin, Jean-Michel; Robert, Christian P. (2008) Article accepté pour publication ou publié
-
Douc, Randal; Guillin, Arnaud; Marin, Jean-Michel; Robert, Christian P. (2007) Article accepté pour publication ou publié
-
Cappé, Olivier; Guillin, Arnaud; Marin, Jean-Michel; Robert, Christian P. (2004) Article accepté pour publication ou publié
-
Cappé, Olivier; Guillin, Arnaud; Marin, Jean-Michel; Robert, Christian P. (2002) Document de travail / Working paper
-
Robert, Christian P.; Marin, Jean-Michel; Iacobucci, Alessandra (2010) Article accepté pour publication ou publié