• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Finite Time Merton Strategy under Drawdown Constraint: A Viscosity Solution Approach

Elie, Romuald (2008), Finite Time Merton Strategy under Drawdown Constraint: A Viscosity Solution Approach, Applied Mathematics and Optimization, 58, 3, p. 411-431. http://dx.doi.org/10.1007/s00245-008-9044-y

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00362305/en/
Date
2008
Journal name
Applied Mathematics and Optimization
Volume
58
Number
3
Publisher
Springer
Pages
411-431
Publication identifier
http://dx.doi.org/10.1007/s00245-008-9044-y
Metadata
Show full item record
Author(s)
Elie, Romuald
Abstract (EN)
We consider the optimal consumption-investment problem under the drawdown constraint, i.e. the wealth process never falls below a fixed fraction of its running maximum. We assume that the risky asset is driven by the constant coefficients Black and Scholes model and we consider a general class of utility functions. On an infinite time horizon, Elie and Touzi (Preprint, [2006]) provided the value function as well as the optimal consumption and investment strategy in explicit form. In a more realistic setting, we consider here an agent optimizing its consumption-investment strategy on a finite time horizon. The value function interprets as the unique discontinuous viscosity solution of its corresponding Hamilton-Jacobi-Bellman equation. This leads to a numerical approximation of the value function and allows for a comparison with the explicit solution in infinite horizon.
Subjects / Keywords
Consumption-investment strategy - Drawdown constraint - Viscosity solution - Comparison principle

Related items

Showing items related by title and author.

  • Thumbnail
    Optimal Control under Stochastic Target Constraints 
    Bouchard, Bruno; Elie, Romuald; Imbert, Cyril (2010) Article accepté pour publication ou publié
  • Thumbnail
    Optimal lifetime consumption and investment under a drawdown constraint 
    Touzi, Nizar; Elie, Romuald (2008) Article accepté pour publication ou publié
  • Thumbnail
    Quantile hedging and optimal control under stochastic target constraints 
    Elie, Romuald (2009) Communication / Conférence
  • Exact replication under Delta constraints 
    Chassagneux, Jean-François; Elie, Romuald; Kharroubi, Idris (2012-08) Document de travail / Working paper
  • Thumbnail
    Barrier option hedging under constraints: a viscosity approach 
    Bouchard, Bruno; Ben Tahar, Imen (2006) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo