• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Kac's Program in Kinetic Theory

Mouhot, Clément; Mischler, Stéphane (2013), Kac's Program in Kinetic Theory, Inventiones Mathematicae, 193, 1, p. 1-147. http://dx.doi.org/10.1007/s00222-012-0422-3

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00608971/fr/
Date
2013
Journal name
Inventiones Mathematicae
Volume
193
Number
1
Publisher
Springer
Pages
1-147
Publication identifier
http://dx.doi.org/10.1007/s00222-012-0422-3
Metadata
Show full item record
Author(s)
Mouhot, Clément
Mischler, Stéphane
Abstract (EN)
This paper is devoted to the study of propagation of chaos and mean-field limit for systems of indistinguable particles undergoing collision processes, as formulated by M. Kac (1956) for a simplified model and extended by H. P. McKean (1967) to the Boltzmann equation. We prove quantitative and uniform in time estimates measuring the distance between the many-particle system and the limit system. These estimates imply in particular the propagation of chaos for marginals in weak measure distances but are more general: they hold for non-chaotic initial data and control the complete many-particle distribution. We also prove the propagation of entropic chaos, as defined in [12], answering a question of Kac about the microscopic derivation of the H-theorem. We finally prove estimates of relaxation to equilibrium (in Wasserstein distance and relative entropy) independent of the number of particles. Our results cover the two main Boltzmann physical collision processes with unbounded collision rates: hard spheres and true Maxwell molecules interactions. Starting from an inspirative paper of A. Grünbaum (1971) we develop a new method which reduces the question of propagation of chaos to the one of proving a purely functional estimate on some generator operators (consistency estimates) together with fine differentiability estimates on the flow of the limit non-linear equation (stability estimates). These results provide the first answer to the question raised by Kac of relating the long-time behavior of a collisional particle system with the one of its mean-field limit, however using dissipativity at the level of the mean-field limit instead of using it at the level of the many-particle Markov process.
Subjects / Keywords
hard spheres; non cutoff; Maxwell molecules; Boltzmann equation; collision process; jump process; uniform in time; quantitative; mean-field limit; master equation; kinetic theory; Kac's program

Related items

Showing items related by title and author.

  • Thumbnail
    About Kac's Program in Kinetic Theory 
    Mouhot, Clément; Mischler, Stéphane (2011) Article accepté pour publication ou publié
  • Thumbnail
    Fractional diffusion limit for collisional kinetic equations 
    Mellet, Antoine; Mischler, Stéphane; Mouhot, Clément (2011) Article accepté pour publication ou publié
  • Thumbnail
    Exponential stability of slowly decaying solutions to the kinetic Fokker-Planck equation 
    Mischler, Stéphane; Mouhot, Clément (2016) Article accepté pour publication ou publié
  • Thumbnail
    Quantitative uniform in time chaos propagation for Boltzmann collision processes 
    Mouhot, Clément; Mischler, Stéphane (2010) Document de travail / Working paper
  • Thumbnail
    Weighted Korn and Poincaré-Korn inequalities in the Euclidean space and associated operators 
    Carrapatoso, Kleber; Dolbeault, Jean; Hérau, Frédéric; Mischler, Stéphane; Mouhot, Clément (2022) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo