• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Aide
  • Connexion
  • Langue 
    • Français
    • English
Consulter le document 
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Afficher

Toute la baseCentres de recherche & CollectionsAnnée de publicationAuteurTitreTypeCette collectionAnnée de publicationAuteurTitreType

Mon compte

Connexion

Enregistrement

Statistiques

Documents les plus consultésStatistiques par paysAuteurs les plus consultés
Thumbnail - No thumbnail

Kac's Program in Kinetic Theory

Mouhot, Clément; Mischler, Stéphane (2013), Kac's Program in Kinetic Theory, Inventiones Mathematicae, 193, 1, p. 1-147. http://dx.doi.org/10.1007/s00222-012-0422-3

Type
Article accepté pour publication ou publié
Lien vers un document non conservé dans cette base
http://hal.archives-ouvertes.fr/hal-00608971/fr/
Date
2013
Nom de la revue
Inventiones Mathematicae
Volume
193
Numéro
1
Éditeur
Springer
Pages
1-147
Identifiant publication
http://dx.doi.org/10.1007/s00222-012-0422-3
Métadonnées
Afficher la notice complète
Auteur(s)
Mouhot, Clément
Mischler, Stéphane
Résumé (EN)
This paper is devoted to the study of propagation of chaos and mean-field limit for systems of indistinguable particles undergoing collision processes, as formulated by M. Kac (1956) for a simplified model and extended by H. P. McKean (1967) to the Boltzmann equation. We prove quantitative and uniform in time estimates measuring the distance between the many-particle system and the limit system. These estimates imply in particular the propagation of chaos for marginals in weak measure distances but are more general: they hold for non-chaotic initial data and control the complete many-particle distribution. We also prove the propagation of entropic chaos, as defined in [12], answering a question of Kac about the microscopic derivation of the H-theorem. We finally prove estimates of relaxation to equilibrium (in Wasserstein distance and relative entropy) independent of the number of particles. Our results cover the two main Boltzmann physical collision processes with unbounded collision rates: hard spheres and true Maxwell molecules interactions. Starting from an inspirative paper of A. Grünbaum (1971) we develop a new method which reduces the question of propagation of chaos to the one of proving a purely functional estimate on some generator operators (consistency estimates) together with fine differentiability estimates on the flow of the limit non-linear equation (stability estimates). These results provide the first answer to the question raised by Kac of relating the long-time behavior of a collisional particle system with the one of its mean-field limit, however using dissipativity at the level of the mean-field limit instead of using it at the level of the many-particle Markov process.
Mots-clés
hard spheres; non cutoff; Maxwell molecules; Boltzmann equation; collision process; jump process; uniform in time; quantitative; mean-field limit; master equation; kinetic theory; Kac's program

Publications associées

Affichage des éléments liés par titre et auteur.

  • Vignette de prévisualisation
    About Kac's Program in Kinetic Theory 
    Mouhot, Clément; Mischler, Stéphane (2011) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Fractional diffusion limit for collisional kinetic equations 
    Mellet, Antoine; Mischler, Stéphane; Mouhot, Clément (2011) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Exponential stability of slowly decaying solutions to the kinetic Fokker-Planck equation 
    Mischler, Stéphane; Mouhot, Clément (2016) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Quantitative uniform in time chaos propagation for Boltzmann collision processes 
    Mouhot, Clément; Mischler, Stéphane (2010) Document de travail / Working paper
  • Vignette de prévisualisation
    Weighted Korn and Poincaré-Korn inequalities in the Euclidean space and associated operators 
    Carrapatoso, Kleber; Dolbeault, Jean; Hérau, Frédéric; Mischler, Stéphane; Mouhot, Clément (2022) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Tél. : 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo