dc.contributor.author | Elie, Romuald | |
dc.date.accessioned | 2009-07-02T12:30:45Z | |
dc.date.available | 2009-07-02T12:30:45Z | |
dc.date.issued | 2008 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/671 | |
dc.language.iso | en | en |
dc.subject | Consumption-investment strategy - Drawdown constraint - Viscosity solution - Comparison principle | en |
dc.subject.ddc | 519 | en |
dc.title | Finite Time Merton Strategy under Drawdown Constraint: A Viscosity Solution Approach | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | We consider the optimal consumption-investment problem under the drawdown constraint, i.e. the wealth process never falls below a fixed fraction of its running maximum. We assume that the risky asset is driven by the constant coefficients Black and Scholes model and we consider a general class of utility functions. On an infinite time horizon, Elie and Touzi (Preprint, [2006]) provided the value function as well as the optimal consumption and investment strategy in explicit form. In a more realistic setting, we consider here an agent optimizing its consumption-investment strategy on a finite time horizon. The value function interprets as the unique discontinuous viscosity solution of its corresponding Hamilton-Jacobi-Bellman equation. This leads to a numerical approximation of the value function and allows for a comparison with the explicit solution in infinite horizon. | en |
dc.relation.isversionofjnlname | Applied Mathematics and Optimization | |
dc.relation.isversionofjnlvol | 58 | en |
dc.relation.isversionofjnlissue | 3 | en |
dc.relation.isversionofjnldate | 2008-12 | |
dc.relation.isversionofjnlpages | 411-431 | en |
dc.relation.isversionofdoi | http://dx.doi.org/10.1007/s00245-008-9044-y | en |
dc.identifier.urlsite | http://hal.archives-ouvertes.fr/hal-00362305/en/ | en |
dc.description.sponsorshipprivate | oui | en |
dc.relation.isversionofjnlpublisher | Springer | en |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |