Show simple item record

dc.contributor.authorBarles, Guy
HAL ID: 1242
dc.contributor.authorChasseigne, Emmanuel
HAL ID: 2308
dc.contributor.authorCiomaga, Adina
HAL ID: 14538
dc.contributor.authorImbert, Cyril
HAL ID: 9368
ORCID: 0000-0002-1290-8257
dc.date.accessioned2011-07-19T10:11:56Z
dc.date.available2011-07-19T10:11:56Z
dc.date.issued2012
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/6730
dc.language.isoenen
dc.subjectregularity of generalized solutionsen
dc.subjectviscosity solutionsen
dc.subjectnonlinear elliptic equations integro partial-differential equationsen
dc.subject.ddc515en
dc.titleLipschitz Regularity of Solutions for Mixed Integro-Differential Equationsen
dc.typeArticle accepté pour publication ou publié
dc.contributor.editoruniversityotherDépartement de Mathématiques et Applications (DMA) ENS Paris;France
dc.contributor.editoruniversityotherLaboratoire de Mathématiques et Physique Théorique (LMPT) Université François Rabelais - Tours;
dc.contributor.editoruniversityotherCentre de Mathématiques et de Leurs Applications (CMLA) ENS Cachan;France
dc.description.abstractenWe establish new Hoelder and Lipschitz estimates for viscosity solutions of a large class of elliptic and parabolic nonlinear integro-differential equations, by the classical Ishii-Lions's method. We thus extend the Hoelder regularity results recently obtained by Barles, Chasseigne and Imbert (2011). In addition, we deal with a new class of nonlocal equations that we term mixed integro-differential equations. These equations are particularly interesting, as they are degenerate both in the local and nonlocal term, but their overall behavior is driven by the local-nonlocal interaction, e.g. the fractional diffusion may give the ellipticity in one direction and the classical diffusion in the complementary one.en
dc.relation.isversionofjnlnameJournal of Differential Equations
dc.relation.isversionofjnlvol252
dc.relation.isversionofjnlissue11
dc.relation.isversionofjnldate2012
dc.relation.isversionofjnlpages6012-6060
dc.relation.isversionofdoihttp://dx.doi.org/10.1016/j.jde.2012.02.013
dc.identifier.urlsitehttp://hal.archives-ouvertes.fr/hal-00608848/fr/en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherElsevier
dc.subject.ddclabelAnalyseen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record