The two limits of the Schrödinger equation in the semi-classical approximation: discerned and non-discerned particles in classical mechanics
Gondran, Alexandre; Gondran, Michel (2011), The two limits of the Schrödinger equation in the semi-classical approximation: discerned and non-discerned particles in classical mechanics, dans Larsson, Jan-Ake; Khrennikov, Andrei; Jaeger, Gregg; Hiesmayr, Beatrix; Haven, Emmanuel; Fei, Shao-Ming; D'Ariano, Mauro, Foundations of Probability and Physics - 6, p. 14
Type
Communication / ConférenceLien vers un document non conservé dans cette base
http://hal.archives-ouvertes.fr/hal-00605920/fr/Date
2011Titre du colloque
Foundations of Physics and Probability (FPP6)Date du colloque
2011-06Ville du colloque
VäxjöPays du colloque
SuèdeTitre de l'ouvrage
Foundations of Probability and Physics - 6Auteurs de l’ouvrage
Larsson, Jan-Ake; Khrennikov, Andrei; Jaeger, Gregg; Hiesmayr, Beatrix; Haven, Emmanuel; Fei, Shao-Ming; D'Ariano, MauroTitre de la collection
AIP Conference ProceedingsNuméro dans la collection
1424Isbn
978-0-7354-1004-6
Pages
14; 111-115
Identifiant publication
Métadonnées
Afficher la notice complèteRésumé (EN)
We study, in the semi-classical approximation, the convergence of the quantum density and the quantum action, solutions to the Madelung equations, when the Planck constant h tends to 0. We find two different solutions which depend to the initial density . In the first case where the initial quantum density is a classical density rho_0(x), the quantum density and the quantum action converge to a classical action and a classical density which satisfy the statistical Hamilton-Jacobi equations. These are the equations of a set of classical particles whose initial positions are known only by the density rho_0(x). In the second case where initial densityMots-clés
non-discerned particles; approximation; Schrödinger equation; quantum mechanicsPublications associées
Affichage des éléments liés par titre et auteur.
-
Gondran, Alexandre; Gondran, Michel (2011) Article accepté pour publication ou publié
-
Gondran, Alexandre; Gondran, Michel (2013-11) Document de travail / Working paper
-
Khuat-Duy, David (1997) Article accepté pour publication ou publié
-
Lewin, Mathieu (2018) Article accepté pour publication ou publié
-
Fournais, Søren; Madsen, Peter (2020) Article accepté pour publication ou publié