Track estimation with binary derivative observations
Ickowicz, Adrien (2011), Track estimation with binary derivative observations. https://basepub.dauphine.fr/handle/123456789/6774
Type
Document de travail / Working paperExternal document link
http://hal.archives-ouvertes.fr/hal-00610181/fr/Date
2011Publisher
Université Paris-Dauphine
Published in
Paris
Pages
14
Metadata
Show full item recordAuthor(s)
Ickowicz, AdrienAbstract (EN)
We focus in this paper in the estimation of a target trajectory defined by whether a time constant parameter in a simple stochastic process or a random walk with binary observations. The binary observation comes from binary derivative sensors, that is, the target is getting closer or moving away. Such a binary obervation has a time property that will be used to ensure the quality of a max-likelihood estimation, through single index model or classification for the constant velocity movement. In the second part of this paper we present a new algorithm for target tracking within a binary sensor network when the target trajectory is assumed to be modeled by a random walk. For a given target, this algorithm provides an estimation of its velocity and its position. The greatest improvements are made through a position correction and velocity analysis.Subjects / Keywords
tracking algorithm; single index model; maximum likelihood; binary sensors; parameter estimationRelated items
Showing items related by title and author.
-
Blanchet, Adrien; Dolbeault, Jean; Monneau, Régis (2010) Article accepté pour publication ou publié
-
Blanchet, Adrien; Dolbeault, Jean; Monneau, Régis (2006) Article accepté pour publication ou publié
-
Rubenthaler, Sylvain; Jacob, Pierre E.; Doucet, Arnaud (2013) Document de travail / Working paper
-
Hairault, Adrien; Robert, Christian; Rousseau, Judith (2022) Document de travail / Working paper
-
Mengin, Elie; Rossi, Fabrice (2021) Communication / Conférence