• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

Convex Representation for Lower Semicontinuous Envelopes of Functionals in L1

Chambolle, Antonin (2001), Convex Representation for Lower Semicontinuous Envelopes of Functionals in L1, Journal of Convex Analysis, 8, 1, p. 149-170

View/Open
2000-1.ps.gz (119.4Kb)
convex_chambolle.PDF (559.3Kb)
Type
Article accepté pour publication ou publié
Date
2001
Journal name
Journal of Convex Analysis
Volume
8
Number
1
Publisher
Heldermann Verlag
Pages
149-170
Metadata
Show full item record
Author(s)
Chambolle, Antonin cc
Abstract (EN)
G. Alberti, G. Bouchitte and G. Dal Maso [The calibration method for the Mumford-Shah functional, C. R. Acad. Sci. Paris 329, Serie I (1999) 249--254] recently found sufficient conditions for the minimizers of the (nonconvex) Mumford-Shah functional. Their method consists in an extension of the calibration method (that is used for the characterization of minimal surfaces), adapted to this functional. The existence of a calibration, given a minimizer of the functional, remains an open problem. We introduce in this paper a general framework for the study of this problem. We first observe that, roughly, the minimization of any functional of a scalar function can be achieved by minimizing a convex functional, in higher dimension. Although this principle is in general too vague, in some situations, including the Mumford-Shah case in dimension one, it can be made more precise and leads to the conclusion that for every minimizer, the calibration exists -- although, still, in a very weak (asymptotical) sense.
Subjects / Keywords
minimizer; calibration; Mumford-Shah functional

Related items

Showing items related by title and author.

  • Thumbnail
    L1-Gradient Flow of Convex Functionals 
    Chambolle, Antonin; Novaga, Matteo (2022) Document de travail / Working paper
  • Thumbnail
    Evolution of characteristic functions of convex sets in the plane by the minimizing total variation flow 
    Alter, François; Caselles, Vincent; Chambolle, Antonin (2005) Article accepté pour publication ou publié
  • Thumbnail
    A characterization of convex calibrable sets in IRⁿ 
    Chambolle, Antonin; Caselles, Vincent; Alter, François (2005) Article accepté pour publication ou publié
  • Thumbnail
    Discrete approximation of the Mumford-Shah functional in dimension two 
    Chambolle, Antonin; Dal Maso, Gianni (1999) Article accepté pour publication ou publié
  • Thumbnail
    On Representer Theorems and Convex Regularization 
    Boyer, Claire; Chambolle, Antonin; De Castro, Yohann; Duval, Vincent; de Gournay, Frédéric; Weiss, Pierre (2019) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo