
Convex Representation for Lower Semicontinuous Envelopes of Functionals in L1
Chambolle, Antonin (2001), Convex Representation for Lower Semicontinuous Envelopes of Functionals in L1, Journal of Convex Analysis, 8, 1, p. 149-170
Type
Article accepté pour publication ou publiéDate
2001Journal name
Journal of Convex AnalysisVolume
8Number
1Publisher
Heldermann Verlag
Pages
149-170
Metadata
Show full item recordAbstract (EN)
G. Alberti, G. Bouchitte and G. Dal Maso [The calibration method for the Mumford-Shah functional, C. R. Acad. Sci. Paris 329, Serie I (1999) 249--254] recently found sufficient conditions for the minimizers of the (nonconvex) Mumford-Shah functional. Their method consists in an extension of the calibration method (that is used for the characterization of minimal surfaces), adapted to this functional. The existence of a calibration, given a minimizer of the functional, remains an open problem. We introduce in this paper a general framework for the study of this problem. We first observe that, roughly, the minimization of any functional of a scalar function can be achieved by minimizing a convex functional, in higher dimension. Although this principle is in general too vague, in some situations, including the Mumford-Shah case in dimension one, it can be made more precise and leads to the conclusion that for every minimizer, the calibration exists -- although, still, in a very weak (asymptotical) sense.Subjects / Keywords
minimizer; calibration; Mumford-Shah functionalRelated items
Showing items related by title and author.
-
Chambolle, Antonin; Novaga, Matteo (2022) Document de travail / Working paper
-
Alter, François; Caselles, Vincent; Chambolle, Antonin (2005) Article accepté pour publication ou publié
-
Chambolle, Antonin; Caselles, Vincent; Alter, François (2005) Article accepté pour publication ou publié
-
Chambolle, Antonin; Dal Maso, Gianni (1999) Article accepté pour publication ou publié
-
Boyer, Claire; Chambolle, Antonin; De Castro, Yohann; Duval, Vincent; de Gournay, Frédéric; Weiss, Pierre (2019) Article accepté pour publication ou publié