Weak martingale representation for continuous Markov processes and application to quadratic growth BSDEs
dc.contributor.author | Réveillac, Anthony
HAL ID: 745074 | |
dc.date.accessioned | 2011-08-29T13:45:00Z | |
dc.date.available | 2011-08-29T13:45:00Z | |
dc.date.issued | 2011 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/6873 | |
dc.language.iso | en | en |
dc.subject | continuous Markov martingale | en |
dc.subject | differentiability of BSDEs | en |
dc.subject | existence of quadratic BSDEs | en |
dc.subject | Martingale representation | en |
dc.subject.ddc | 519 | en |
dc.title | Weak martingale representation for continuous Markov processes and application to quadratic growth BSDEs | en |
dc.type | Document de travail / Working paper | |
dc.description.abstracten | In this paper we prove that every random variable of the form $F(M_T)$ with $F:\real^d \to\real$ a Borelian map and $M$ a $d$-dimensional continuous Markov martingale with respect to a Markov filtration $\mathcal{F}$ admits an exact integral representation with respect to $M$, that is, without any orthogonal component. This representation holds true regardless any regularity assumption on $F$. We extend this result to Markovian quadratic growth BSDEs driven by $M$ and show they can be solved without an orthogonal component. To this end, we extend first existence results for such BSDEs under a general filtration and then obtain regularity properties such as differentiability for the solution process. | en |
dc.publisher.name | université Paris-Dauphine | en |
dc.publisher.city | Paris | en |
dc.identifier.citationpages | 34 | en |
dc.identifier.urlsite | http://hal.archives-ouvertes.fr/hal-00615501/fr/ | en |
dc.description.sponsorshipprivate | oui | en |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |