• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Viscosity solutions for a polymer crystal growth model

Monteillet, Aurélien; Ley, Olivier; Cardaliaguet, Pierre (2011), Viscosity solutions for a polymer crystal growth model, Indiana University Mathematics Journal, 60, 3, p. 895-936. http://dx.doi.org/10.1512/iumj.2011.60.4322

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00461361/fr/
Date
2011
Journal name
Indiana University Mathematics Journal
Volume
60
Number
3
Pages
895-936
Publication identifier
http://dx.doi.org/10.1512/iumj.2011.60.4322
Metadata
Show full item record
Author(s)
Monteillet, Aurélien
Ley, Olivier
Cardaliaguet, Pierre
Abstract (EN)
We prove existence of a solution for a polymer crystal growth model describing the movement of a front $(\Gamma(t))$ evolving with a nonlocal velocity. In this model the nonlocal velocity is linked to the solution of a heat equation with source $\delta_\Gamma$. The proof relies on new regularity results for the eikonal equation, in which the velocity is positive but merely measurable in time and with Hölder bounds in space. From this result, we deduce \textit{a priori} regularity for the front. On the other hand, under this regularity assumption, we prove bounds and regularity estimates for the solution of the heat equation.
Subjects / Keywords
heat equation; eikonal equation; viscosity solutions; lower-bound gradient estimate; geometrical properties; level-set approach; nonlocal front propagation; Nonlocal Hamilton-Jacobi Equations

Related items

Showing items related by title and author.

  • Thumbnail
    Existence of weak solutions for general nonlocal and nonlinear second-order parabolic equations 
    Monteillet, Aurélien; Ley, Olivier; Cardaliaguet, Pierre; Barles, Guy (2009) Article accepté pour publication ou publié
  • Thumbnail
    Uniqueness results for nonlocal Hamilton–Jacobi equations 
    Barles, Guy; Cardaliaguet, Pierre; Ley, Olivier; Monteillet, Aurélien (2009) Article accepté pour publication ou publié
  • Thumbnail
    Hölder Regularity for Viscosity Solutions of Fully Nonlinear, Local or Nonlocal, Hamilton–Jacobi Equations with Superquadratic Growth in the Gradient 
    Cardaliaguet, Pierre; Rainer, Catherine (2011) Article accepté pour publication ou publié
  • Thumbnail
    Nonfattening condition for the generalized evolution by mean curvature and applications 
    Biton, Samuel; Cardaliaguet, Pierre; Ley, Olivier (2008) Article accepté pour publication ou publié
  • Thumbnail
    Global Existence Results and Uniqueness for Dislocation Equations 
    Barles, Guy; Cardaliaguet, Pierre; Ley, Olivier; Monneau, Régis (2008) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo