• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Hölder estimates in space-time for viscosity solutions of Hamilton-Jacobi equations

Cannarsa, Piermarco; Cardaliaguet, Pierre (2010), Hölder estimates in space-time for viscosity solutions of Hamilton-Jacobi equations, Communications on Pure and Applied Mathematics, 63, 5, p. 590-629. http://dx.doi.org/10.1002/cpa.20315

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00371681/fr/
Date
2010
Journal name
Communications on Pure and Applied Mathematics
Volume
63
Number
5
Publisher
Wiley
Pages
590-629
Publication identifier
http://dx.doi.org/10.1002/cpa.20315
Metadata
Show full item record
Author(s)
Cannarsa, Piermarco
Cardaliaguet, Pierre
Abstract (EN)
It is well-known that solutions to the basic problem in the calculus of variations may fail to be Lipschitz-continuous when the Lagrangian depends on t. Similarly, for viscosity solutions to time-dependent Hamilton-Jacobi equations one cannot expect Lipschitz bounds to hold uniformly with respect to the regularity of coefficients. This phenomenon raises the question whether such solutions satisfy uniform estimates in some weaker norm. We will show that this is the case for a suitable Hölder norm, obtaining uniform estimates in (x,t) for solutions to first- and second-order Hamilton-Jacobi equations. Our results apply to degenerate parabolic equations and require superlinear growth at infinity, in the gradient variables, of the Hamiltonian. Proofs are based on comparison arguments and representation formulas for viscosity solutions, as well as weak reverse Hölder inequalities.
Subjects / Keywords
Hamilton-Jacobi equations; viscosity solutions; Hölder continuity; degenerate parabolic equations; reverse Hölder inequalities

Related items

Showing items related by title and author.

  • Thumbnail
    Hölder Regularity for Viscosity Solutions of Fully Nonlinear, Local or Nonlocal, Hamilton–Jacobi Equations with Superquadratic Growth in the Gradient 
    Cardaliaguet, Pierre; Rainer, Catherine (2011) Article accepté pour publication ou publié
  • Thumbnail
    Viscosity Solutions of Hamilton-Jacobi Equations in Banach Spaces 
    Crandall, Michael G.; Lions, Pierre-Louis (1985) Article accepté pour publication ou publié
  • Thumbnail
    Error estimates and convergence rates for the stochastic homogenization of Hamilton-Jacobi equations 
    Armstrong, Scott N.; Cardaliaguet, Pierre; Souganidis, Panagiotis E. (2014) Article accepté pour publication ou publié
  • Thumbnail
    Viscosity solutions of Hamilton-Jacobi equations in infinite dimensions. V. Unbounded linear terms and B-continuous solutions 
    Crandall, Michael G.; Lions, Pierre-Louis (1991) Article accepté pour publication ou publié
  • Thumbnail
    Viscosity solutions of Hamilton-Jacobi equations in infinite dimensions. IV. Hamiltonians with unbounded linear terms 
    Crandall, Michael G.; Lions, Pierre-Louis (1990) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo