Show simple item record

dc.contributor.authorAlvarez, Olivier
dc.contributor.authorCardaliaguet, Pierre
dc.contributor.authorMonneau, Régis
dc.date.accessioned2011-09-06T15:48:08Z
dc.date.available2011-09-06T15:48:08Z
dc.date.issued2005
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/6930
dc.language.isoenen
dc.subjectDislocation dynamicsen
dc.subjecteikonal equationen
dc.subjectHamilton-Jacobi equationsen
dc.subjectdiscontinuous viscosity solutionsen
dc.subjectnon-local equationsen
dc.subject.ddc515en
dc.titleExistence and uniqueness for dislocation dynamics with nonnegative velocityen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenWe study the problem of large time existence of solutions for a mathematical model describing dislocation dynamics in crystals. The mathematical model is a geometric and non local eikonal equation which does not preserve the inclusion. Under the assumption that the dislocation line is expanding, we prove existence and uniqueness of the solution in the framework of discontinuous viscosity solutions. We also show that this solution satisfies some variational properties, which allows to prove that the energy associated to the dislocation dynamics is non increasing.en
dc.relation.isversionofjnlnameInterfaces and free boundaries
dc.relation.isversionofjnlvol7en
dc.relation.isversionofjnlissue4en
dc.relation.isversionofjnldate2005
dc.relation.isversionofjnlpages415-434en
dc.relation.isversionofdoihttp://dx.doi.org/10.4171/IFB/131en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherEuropean Mathematical Societyen
dc.subject.ddclabelAnalyseen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record