Visco-penalization of the sum of two monotone operators
Hirstoaga, Sever A.; Combettes, Patrick L. (2008), Visco-penalization of the sum of two monotone operators, Nonlinear Analysis: Theory, Methods & Applications, 69, 2, p. 579-591. http://dx.doi.org/10.1016/j.na.2007.06.003
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00619389/fr/Date
2008Journal name
Nonlinear Analysis: Theory, Methods & ApplicationsVolume
69Number
2Publisher
Elsevier
Pages
579-591
Publication identifier
Metadata
Show full item recordAbstract (EN)
A new type of approximating curve for finding a particular zero of the sum of two maximal monotone operators in a Hilbert space is investigated. This curve consists of the zeros of perturbed problems in which one operator is replaced with its Yosida approximation and a viscosity term is added. As the perturbation vanishes, the curve is shown to converge to the zero of the sum that solves a particular strictly monotone variational inequality. As an off-spring of this result, we obtain an approximating curve for finding a particular zero of the sum of several maximal monotone operators. Applications to convex optimization are discussed.Subjects / Keywords
Yosida approximation; Viscosity; Variational inequality; Penalization; Monotone operator; Approximating curveRelated items
Showing items related by title and author.
-
Benamou, Jean-David; Collino, Francis; Mirebeau, Jean-Marie (2016) Article accepté pour publication ou publié
-
Vigeral, Guillaume; Sorin, Sylvain (2013) Article accepté pour publication ou publié
-
Van Schaftingen, Jean; Meunier, Nicolas; Damlamian, Alain (2007) Article accepté pour publication ou publié
-
Bernard, Patrick; Labrousse, Clémence (2016) Article accepté pour publication ou publié
-
Santambrogio, Filippo; Rufibach, Kaspar; Balabdaoui, Fadoua (2010) Article accepté pour publication ou publié