
Oscillating minimizers of a fourth order problem invariant under scaling
Catto, Isabelle; Dolbeault, Jean; Benguria, Rafael; Monneau, Régis (2004), Oscillating minimizers of a fourth order problem invariant under scaling, Journal of Differential Equations, 205, 1, p. 253-269. http://dx.doi.org/10.1016/j.jde.2004.03.024
View/ Open
Type
Article accepté pour publication ou publiéDate
2004Journal name
Journal of Differential EquationsVolume
205Number
1Pages
253-269
Publication identifier
Metadata
Show full item recordAbstract (EN)
By variational methods, we prove the inequality $$\int_\R u''{}^2\,dx-\int_\R u''\,u^2\,dx\geq I\,\int_\R u^4\,dx\quad \forall\; u\in L^4(\R)\;\mbox{such that}\; u''\in L^2(\R) $$ for some constant $I\in (-9/64,-1/4)$. This inequality is connected to Lieb-Thirring type problems and has interesting scaling properties. The best constant is achieved by sign changing minimizers of a problem on periodic functions, but does not depend on the period. Moreover, we completely characterize the minimizers of the periodic problem.Subjects / Keywords
Fourth-order operators; Loss of compactness; Inequalities; Minimization; Scaling invariance; Euler–Lagrange equation; Lagrange multiplier; Shooting method; Commutator method for Lieb– Thirring inequalities; Lieb–Thirring inequalitiesRelated items
Showing items related by title and author.
-
Benguria, Rafael; Dolbeault, Jean; Monneau, Régis (2009) Article accepté pour publication ou publié
-
Benguria, Rafael; Dolbeault, Jean; Esteban, Maria J. (2000) Article accepté pour publication ou publié
-
Blanchet, Adrien; Dolbeault, Jean; Monneau, Régis (2010) Article accepté pour publication ou publié
-
Blanchet, Adrien; Dolbeault, Jean; Monneau, Régis (2006) Article accepté pour publication ou publié
-
Monneau, Régis; Blanchet, Adrien; Dolbeault, Jean (2005) Chapitre d'ouvrage