dc.contributor.author | Haspot, Boris | |
dc.date.accessioned | 2011-09-22T14:42:40Z | |
dc.date.available | 2011-09-22T14:42:40Z | |
dc.date.issued | 2011 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/6992 | |
dc.language.iso | en | en |
dc.subject | compactness and concentration | en |
dc.subject | gain of derivability | en |
dc.subject | Weak solutions | en |
dc.subject.ddc | 515 | en |
dc.title | Existence of Global Weak Solution for Compressible Fluid Models of Korteweg Type | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | This work is devoted to proving existence of global weak solutions for a general isothermal model of capillary fluids derived by Dunn and Serrin (Arch Rational Mech Anal 88(2):95–133, 1985) which can be used as a phase transition model. We improve the results of Danchin and Desjardins (Annales de l’IHP, Analyse non linéaire 18:97–133, 2001) by showing the existence of global weak solution in dimension two for initial data in the energy space, close to a stable equilibrium and with specific choices on the capillary coefficients. In particular we are interested in capillary coefficients approximating a constant capillarity coefficient κ. To finish we show the existence of global weak solution in dimension one for a specific type of capillary coefficients with large initial data in the energy space. | en |
dc.relation.isversionofjnlname | Journal of Mathematical Fluid Mechanics | |
dc.relation.isversionofjnlvol | 13 | en |
dc.relation.isversionofjnlissue | 2 | en |
dc.relation.isversionofjnldate | 2011 | |
dc.relation.isversionofjnlpages | 223-249 | en |
dc.relation.isversionofdoi | http://dx.doi.org/10.1007/s00021-009-0013-2 | en |
dc.identifier.urlsite | http://arxiv.org/abs/0902.0965v1 | |
dc.description.sponsorshipprivate | oui | en |
dc.relation.isversionofjnlpublisher | Springer | en |
dc.subject.ddclabel | Analyse | en |