Convergence of gradient-based algorithms for the Hartree-Fock equations
Levitt, Antoine (2012), Convergence of gradient-based algorithms for the Hartree-Fock equations, Modélisation mathématique et analyse numérique, 46, 6, p. 1321-1336. http://dx.doi.org/10.1051/m2an/2012008
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00626060/fr/Date
2012Journal name
Modélisation mathématique et analyse numériqueVolume
46Number
6Publisher
EDP Sciences
Pages
1321-1336
Publication identifier
Metadata
Show full item recordAuthor(s)
Levitt, AntoineAbstract (EN)
The numerical solution of the Hartree-Fock equations is a central problem in quantum chemistry for which many algorithms exist. Attempts to justify these algorithms mathematically have been made, notably by Cancès and Le Bris in 2000, but no algorithm has yet been proved to convergence satisfactorily. In this paper, we prove the convergence of a natural gradient algorithm, using a gradient inequality for analytic functionals due to Lojasiewicz. Then, expanding upon the analysis of Cancès and Le Bris, we prove convergence results for the Roothaan and Level-Shifting algorithms. In each case, our method of proof provides estimates on the convergence rate. We compare these with numerical results for the algorithms studied.Subjects / Keywords
Łojasiewicz inequality; Hartree-Fock equations; optimization on manifoldsRelated items
Showing items related by title and author.
-
Lions, Pierre-Louis (1987) Article accepté pour publication ou publié
-
Bardos, Claude; Catto, Isabelle; Mauser, Norbert; Trabelsi, Saber (2010) Article accepté pour publication ou publié
-
Trabelsi, Saber; Mauser, Norbert; Bardos, Claude; Catto, Isabelle (2009) Article accepté pour publication ou publié
-
Mauser, Norbert; Trabelsi, Saber (2010) Article accepté pour publication ou publié
-
Fischer, Patrick; Defranceschi, Mireille; Delhalle, Joseph (1992) Article accepté pour publication ou publié