Parametric inference for mixed models defined by diffusion processes
dc.contributor.author | Samson, Adeline
HAL ID: 9408 | |
dc.contributor.author | Donnet, Sophie
HAL ID: 14568 ORCID: 0000-0003-4370-7316 | |
dc.date.accessioned | 2009-07-02T17:30:28Z | |
dc.date.available | 2009-07-02T17:30:28Z | |
dc.date.issued | 2008 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/702 | |
dc.language.iso | en | en |
dc.subject | Brownian bridge | en |
dc.subject | SAEM algorithm | en |
dc.subject | Non-linear mixed effects model | en |
dc.subject | Maximum likelihood estimation | en |
dc.subject | Incomplete data model | en |
dc.subject | Gibbs algorithm | en |
dc.subject | Euler-Maruyama approximation | en |
dc.subject | Diffusion process | en |
dc.subject.ddc | 519 | en |
dc.title | Parametric inference for mixed models defined by diffusion processes | en |
dc.type | Article accepté pour publication ou publié | |
dc.contributor.editoruniversityother | Université Paris Descartes - Paris V;France | |
dc.description.abstracten | Non-linear mixed models defined by stochastic differential equations (SDEs) are consid- ered: the parameters of the diffusion process are random variables and vary among the individuals. A maximum likelihood estimation method based on the Stochastic Approximation EM algorithm, is proposed. This estimation method uses the Euler-Maruyama approximation of the diffusion, achieved using latent auxiliary data introduced to complete the diffusion process between each pair of measure- ment instants. A tuned hybrid Gibbs algorithm based on conditional Brownian bridges simulations of the unobserved process paths is included in this algorithm. The convergence is proved and the error induced on the likelihood by the Euler-Maruyama approximation is bounded as a function of the step size of the approximation. Results of a pharmacokinetic simulation study illustrate the accuracy of this estimation method. The analysis of the Theophyllin real dataset illustrates the relevance of the SDE approach relative to the deterministic approach. | |
dc.relation.isversionofjnlname | ESAIM. Probability and Statistics | |
dc.relation.isversionofjnlvol | 12 | en |
dc.relation.isversionofjnldate | 2008 | |
dc.relation.isversionofjnlpages | 196-218 | en |
dc.relation.isversionofdoi | http://dx.doi.org/10.1051/ps:2007045 | |
dc.identifier.urlsite | http://hal.archives-ouvertes.fr/hal-00263515/fr/ | |
dc.description.sponsorshipprivate | oui | en |
dc.relation.isversionofjnlpublisher | EDP Sciences | |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |