Functional Multi-Layer Perceptron: a Nonlinear Tool for Functional Data Analysis
Conan-Guez, Brieuc; Rossi, Fabrice (2005), Functional Multi-Layer Perceptron: a Nonlinear Tool for Functional Data Analysis, Neural Networks, 18, 1, p. 45--60. http://dx.doi.org/10.1016/j.neunet.2004.07.001
Type
Article accepté pour publication ou publiéExternal document link
http://hal.inria.fr/inria-00000599/en/Date
2005Journal name
Neural NetworksVolume
18Number
1Publisher
Elsevier
Pages
45--60
Publication identifier
Metadata
Show full item recordAbstract (EN)
In this paper, we study a natural extension of Multi-Layer Perceptrons (MLP) to functional inputs. We show that fundamental results for classical MLP can be extended to functional MLP. We obtain universal approximation results that show the expressive power of functional MLP is comparable to that of numerical MLP. We obtain consistency results which imply that the estimation of optimal parameters for functional MLP is statistically well defined. We finally show on simulated and real world data that the proposed model performs in a very satisfactory way.Subjects / Keywords
Functional data analysis; Multi-Layer Perceptron; Universal Approximation; Supervised learning; Curves discrimination; Learning consistancy; Nonlinear functional model; Spectrometric dataRelated items
Showing items related by title and author.
-
Rossi, Fabrice; Conan-Guez, Brieuc (2008) Chapitre d'ouvrage
-
Conan-Guez, Brieuc; Delannay, Nicolas; Rossi, Fabrice; Verleysen, Michel (2005) Article accepté pour publication ou publié
-
Rossi, Fabrice; Conan-Guez, Brieuc (2005) Article accepté pour publication ou publié
-
Rossi, Fabrice; Conan-Guez, Brieuc (2003) Document de travail / Working paper
-
Conan-Guez, Brieuc; Rossi, Fabrice (2005) Article accepté pour publication ou publié