Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials
Mouhot, Clément (2006), Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials, Communications in Mathematical Physics, 261, p. 629-672. http://dx.doi.org/10.1007/s00220-005-1455-x
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00076709/en/Date
2006Journal name
Communications in Mathematical PhysicsVolume
261Publisher
Springer
Pages
629-672
Publication identifier
Metadata
Show full item recordAuthor(s)
Mouhot, ClémentAbstract (EN)
For the spatially homogeneous Boltzmann equation with hard po- tentials and Grad's cutoff (e.g. hard spheres), we give quantitative estimates of exponential convergence to equilibrium, and we show that the rate of exponential decay is governed by the spectral gap for the linearized equation, on which we provide a lower bound. Our approach is based on establishing spectral gap-like estimates valid near the equilibrium, and then connecting the latter to the quantitative nonlinear theory. This leads us to an explicit study of the linearized Boltzmann collision operator in functional spaces larger than the usual linearization setting.Subjects / Keywords
Boltzmann equation; entropy production; rate of convergence; trend to equilibrium; explicit; spectral gap; spectrum; linearized Boltzmann collision operator; spatially homogeneousRelated items
Showing items related by title and author.
-
Desvillettes, Laurent; Mouhot, Clément (2007) Article accepté pour publication ou publié
-
Tristani, Isabelle (2014) Article accepté pour publication ou publié
-
Carrapatoso, Kleber (2015) Article accepté pour publication ou publié
-
Mouhot, Clément; Villani, Cédric (2004) Article accepté pour publication ou publié
-
Desvillettes, Laurent; Mouhot, Clément (2009) Article accepté pour publication ou publié