The movement of a solid in an incompressible perfect fluid as a geodesic flow
Glass, Olivier; Sueur, Franck (2012), The movement of a solid in an incompressible perfect fluid as a geodesic flow, Proceedings of the American Mathematical Society, 140, p. 2155-2168. http://dx.doi.org/10.1090/S0002-9939-2011-11219-X
Type
Article accepté pour publication ou publiéExternal document link
http://arxiv.org/abs/1102.1380v1Date
2012Journal name
Proceedings of the American Mathematical SocietyVolume
140Publisher
American Mathematical Society
Pages
2155-2168
Publication identifier
Metadata
Show full item recordAbstract (EN)
The motion of a rigid body immersed in an incompressible perfect fluid which occupies a three-dimensional bounded domain has recently been studied under its PDE formulation. In particular, classical solutions have been shown to exist locally in time. In this paper, following the celebrated result of Arnold concerning the case of a perfect incompressible fluid alone, we prove that these classical solutions are the geodesics of a Riemannian manifold of infinite dimension, in the sense that they are the critical points of an action, which is the integral over time of the total kinetic energy of the fluid-rigid body system.Subjects / Keywords
least action principle; Perfect incompressible fluid; fluid-rigid body interactionRelated items
Showing items related by title and author.
-
Sueur, Franck; Glass, Olivier; Takahashi, Takéo (2012) Article accepté pour publication ou publié
-
Glass, Olivier; Lacave, Christophe; Sueur, Franck (2014) Article accepté pour publication ou publié
-
Glass, Olivier; Lacave, Christophe; Sueur, Franck (2016) Article accepté pour publication ou publié
-
Glass, Olivier; Lacave, Christophe; Munnier, Alexandre; Sueur, Franck (2019) Article accepté pour publication ou publié
-
Glass, Olivier; Kolumbán, József; Sueur, Franck (2021) Article accepté pour publication ou publié