Show simple item record

dc.contributor.authorFournier, Nicolas
dc.contributor.authorMischler, Stéphane
dc.date.accessioned2009-07-03T07:59:40Z
dc.date.available2009-07-03T07:59:40Z
dc.date.issued2004
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/715
dc.language.isoenen
dc.subjectCoalescenceen
dc.subjectFragmentationen
dc.subjectDifferential equationsen
dc.subjectEquilibriumen
dc.subject.ddc515en
dc.titleExponential trend to equilibrium for discrete coagulation equations with strong fragmentation and without a balance conditionen
dc.typeArticle accepté pour publication ou publié
dc.contributor.editoruniversityotherINRIA - Université Henri Poincaré - Nancy I - Université de Nancy II - Institut National Polytechnique de Lorraine;France
dc.description.abstractenThe coagulation-fragmentation equation describes the concentration $f_i(t)$ of particles of size $i \in \nn / \{0\}$ at time $t\geq 0$, in a spatially homogeneous infinite system of particles subjected to coalescence and break-up. We show that when the rate of fragmentation is sufficiently stronger than that of coalescence, $(f_i(t))_{i \in \nn / \{0\}}$ tends to an unique equilibrium as $t$ tends to infinity. Although we suppose that the initial datum is sufficiently small, we do not assume a detailed balance (or reversibility) condition. The rate of convergence we obtain is furthermore exponential.en
dc.relation.isversionofjnlnameProceedings of the royal Society of London Series A
dc.relation.isversionofjnlvol460en
dc.relation.isversionofjnlissue2049en
dc.relation.isversionofjnldate2004
dc.relation.isversionofjnlpages2477-2486en
dc.description.sponsorshipprivateouien
dc.subject.ddclabelAnalyseen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record