Random walk delayed on percolation clusters
Simenhaus, François; Comets, Francis (2008), Random walk delayed on percolation clusters, Journal of Applied Probability, 45, 3, p. 689-702. http://dx.doi.org/10.1239/jap/1222441823
Type
Article accepté pour publication ou publiéExternal document link
http://arxiv.org/abs/0710.2320v1Date
2008Journal name
Journal of Applied ProbabilityVolume
45Number
3Publisher
Applied Probability Trust
Pages
689-702
Publication identifier
Metadata
Show full item recordAbstract (EN)
We study a continuous-time random walk on the d-dimensional lattice, subject to a drift and an attraction to large clusters of a subcritical Bernoulli site percolation. We find two distinct regimes: a ballistic one, and a subballistic one taking place when the attraction is strong enough. We identify the speed in the former case, and the algebraic rate of escape in the latter case. Finally, we discuss the diffusive behavior in the case of zero drift and weak attraction.Subjects / Keywords
Random walk in a random environment; subcritical percolation; anomalous transport; anomalous diffusion; environment seen from the particle; couplingRelated items
Showing items related by title and author.
-
Enriquez, Nathanael; Lucas, Cyrille; Simenhaus, François (2010) Article accepté pour publication ou publié
-
Simenhaus, François (2007) Article accepté pour publication ou publié
-
Huveneers, François; Simenhaus, François (2015) Article accepté pour publication ou publié
-
A limit theorem for the survival probability of a simple random walk among power-law renewal traps Poisat, Julien; Simenhaus, François (2018) Document de travail / Working paper
-
Salvi, Michele; Simenhaus, François (2018) Article accepté pour publication ou publié