"Zero" temperature stochastic 3D Ising model and dimer covering fluctuations: a first step towards interface mean curvature motion
Caputo, Pietro; Toninelli, Fabio Lucio; Martinelli, Fabio; Simenhaus, François (2011), "Zero" temperature stochastic 3D Ising model and dimer covering fluctuations: a first step towards interface mean curvature motion, Communications on Pure and Applied Mathematics, 64, 6, p. 778-831. http://dx.doi.org/10.1002/cpa.20359
Type
Article accepté pour publication ou publiéExternal document link
http://arxiv.org/abs/1007.3599v2Date
2011Journal name
Communications on Pure and Applied MathematicsVolume
64Number
6Publisher
Wiley
Pages
778-831
Publication identifier
Metadata
Show full item recordAbstract (EN)
We consider the Glauber dynamics for the Ising model with “+” boundary conditions, at zero temperature or at a temperature that goes to zero with the system size (hence the quotation marks in the title). In dimension d = 3 we prove that an initial domain of linear size L of “−” spins disappears within a time τ+, which is at most L2(log L)c and at least L2/(c log L) for some c > 0. The proof of the upper bound proceeds via comparison with an auxiliary dynamics which mimics the motion by mean curvature that is expected to describe, on large time scales, the evolution of the interface between “+” and “−” domains. The analysis of the auxiliary dynamics requires recent results on the fluctuations of the height function associated to dimmer coverings of the infinite honeycomb lattice. Our result, apart from the spurious logarithmic factors, is the first rigorous confirmation of the Lifshitz law τ+ ≃ const × L2, conjectured on heuristic grounds [8, 13]. In dimension d = 2, τ+ can be shown to be of order L2 without logarithmic corrections: the upper bound was proven in [6], and here we provide the lower bound. For d = 2, we also prove that the spectral gap of the generator behaves like equation image for L large, as conjectured in [2].Subjects / Keywords
stochastic 3D Ising model; interface mean curvature motionRelated items
Showing items related by title and author.
-
Toninelli, Fabio Lucio; Simenhaus, François; Lacoin, Hubert (2014) Article accepté pour publication ou publié
-
Toninelli, Fabio Lucio; Simenhaus, François; Martinelli, Fabio; Lacoin, Hubert; Caputo, Pietro (2012) Article accepté pour publication ou publié
-
Lacoin, Hubert; Simenhaus, François; Toninelli, Fabio Lucio (2015) Article accepté pour publication ou publié
-
Lacoin, Hubert (2013) Article accepté pour publication ou publié
-
Hartarsky, Ivailo; Martinelli, Fabio; Toninelli, Cristina (2022) Article accepté pour publication ou publié