• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Uniqueness and existence of spirals moving by forced mean curvature motion

Monneau, Régis; Imbert, Cyril; Forcadel, Nicolas (2012), Uniqueness and existence of spirals moving by forced mean curvature motion, Interfaces and Free Boundaries, 14, 3, p. 365-400. http://dx.doi.org/10.4171/IFB/285

Type
Article accepté pour publication ou publié
External document link
http://arxiv.org/abs/1002.0326v3
Date
2012
Journal name
Interfaces and Free Boundaries
Volume
14
Number
3
Publisher
European Mathematical Society
Pages
365-400
Publication identifier
http://dx.doi.org/10.4171/IFB/285
Metadata
Show full item record
Author(s)
Monneau, Régis
Imbert, Cyril cc
Forcadel, Nicolas cc
Abstract (EN)
In this paper, we study the motion of spirals by mean curvature type motion in the (two dimensional) plane. Our motivation comes from dislocation dynamics; in this context, spirals appear when a screw dislocation line reaches the surface of a crystal. The first main result of this paper is a comparison principle for the corresponding parabolic quasi-linear equation. As far as motion of spirals are concerned, the novelty and originality of our setting and results come from the fact that, first, the singularity generated by the attached end point of spirals is taken into account for the first time, and second, spirals are studied in the whole space. Our second main result states that the Cauchy problem is well-posed in the class of sub-linear weak (viscosity) solutions. We also explain how to get the existence of smooth solutions when initial data satisfy an additional compatibility condition.
Subjects / Keywords
mean curvature motion; viscosity solutions; quasi-linear parabolic equation; comparison principle; motion of interfaces; spirals

Related items

Showing items related by title and author.

  • Thumbnail
    Homogenization of some particle systems with two-body interactions and of the dislocation dynamics 
    Forcadel, Nicolas; Imbert, Cyril; Monneau, Régis (2009) Article accepté pour publication ou publié
  • Thumbnail
    Existence and uniqueness of traveling waves for fully overdamped Frenkel-Kontorova models 
    Monneau, Régis; Forcadel, Nicolas; Al Haj, Mohammad (2013) Article accepté pour publication ou publié
  • Thumbnail
    Homogenization of accelerated Frenkel-Kontorova models with $n$ types of particles 
    Forcadel, Nicolas; Imbert, Cyril; Monneau, Régis (2012) Article accepté pour publication ou publié
  • Thumbnail
    Recent results on dislocation dynamics and homogenization 
    Monneau, Régis; Imbert, Cyril; Forcadel, Nicolas (2008) Article accepté pour publication ou publié
  • Thumbnail
    Homogenization of fully overdamped Frenkel-Kontorova models 
    Monneau, Régis; Imbert, Cyril; Forcadel, Nicolas (2009) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo