The quadratic Fock functor
Accardi, Luigi; Dhahri, Ameur (2010), The quadratic Fock functor, Journal of Mathematical Physics, 51, 2, p. Paper 22113. http://dx.doi.org/10.1063/1.3294771
Type
Article accepté pour publication ou publiéExternal document link
http://arxiv.org/abs/0910.2454Date
2010Journal name
Journal of Mathematical PhysicsVolume
51Number
2Publisher
American Institute of Physics
Pages
Paper 22113
Publication identifier
Metadata
Show full item recordAbstract (EN)
We construct the quadratic analog of the boson Fock functor. While in the first order (linear) case all contractions on the 1-particle space can be second quantized, the semigroup of contractions that admit a quadratic second quantization is much smaller due to the nonlinearity. The encouraging fact is that it contains, as proper subgroups (i.e., the contractions), all the gauge transformations of second kind and all the a.e. invertible maps of mathd into itself leaving the Lebesgue measure quasi-invariant (in particular, all diffeomorphism of mathd). This allows quadratic two-dimensional quantization of gauge theories, of representations of the Witt group (in fact it continuous analog), of the Zamolodchikov hierarchy, and much more. Within this semigroup we characterize the unitary and the isometric elements and we single out a class of natural contractions.Subjects / Keywords
Heisenberg model; Hilbert spaces; Lie algebrasRelated items
Showing items related by title and author.
-
Accardi, Luigi; Dhahri, Ameur (2009) Article accepté pour publication ou publié
-
Dhahri, Ameur; Accardi, Luigi (2010) Document de travail / Working paper
-
Dhahri, Ameur (2012) Article accepté pour publication ou publié
-
Dhahri, Ameur (2009) Article accepté pour publication ou publié
-
Dhahri, Ameur (2009) Chapitre d'ouvrage