Self-similar scaling limits of non-increasing Markov chains
Miermont, Grégory; Haas, Bénédicte (2011), Self-similar scaling limits of non-increasing Markov chains, Bernoulli, 17, 4, p. 1217-1247. http://dx.doi.org/10.3150/10-BEJ312
Type
Article accepté pour publication ou publiéLien vers un document non conservé dans cette base
http://arxiv.org/abs/0909.3764v1Date
2011Nom de la revue
BernoulliVolume
17Numéro
4Éditeur
Bernoulli Society
Pages
1217-1247
Identifiant publication
Métadonnées
Afficher la notice complèteRésumé (EN)
We study scaling limits of non-increasing Markov chains with values in the set of non-negative integers, under the assumption that the large jump events are rare and happen at rates that behave like a negative power of the current state. We show that the chain starting from n and appropriately rescaled, converges in distribution, as n → ∞, to a non-increasing self-similar Markov process. This convergence holds jointly with that of the rescaled absorption time to the time at which the self-similar Markov process reaches first 0. We discuss various applications to the study of random walks with a barrier, of the number of collisions in Λ-coalescents that do not descend from infinity and of non-consistent regenerative compositions. Further applications to the scaling limits of Markov branching trees are developed in the forthcoming paper [1 1].Mots-clés
regular variation; self-similar Markov processes; regenerative compositions; Λ-coalescents; random walks with a barrier; absorption timePublications associées
Affichage des éléments liés par titre et auteur.
-
Haas, Bénédicte; Miermont, Grégory (2004) Article accepté pour publication ou publié
-
Haas, Bénédicte; Miermont, Grégory (2012) Article accepté pour publication ou publié
-
Rivero, Víctor Manuel; Haas, Bénédicte (2012) Article accepté pour publication ou publié
-
Haas, Bénédicte (2010) Article accepté pour publication ou publié
-
Haas, Bénédicte (2004) Article accepté pour publication ou publié