dc.contributor.author | Miermont, Grégory | |
dc.contributor.author | Haas, Bénédicte | |
dc.date.accessioned | 2011-10-13T11:38:13Z | |
dc.date.available | 2011-10-13T11:38:13Z | |
dc.date.issued | 2011 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/7203 | |
dc.language.iso | en | en |
dc.subject | regular variation | en |
dc.subject | self-similar Markov processes | en |
dc.subject | regenerative compositions | en |
dc.subject | Λ-coalescents | en |
dc.subject | random walks with a barrier | en |
dc.subject | absorption time | en |
dc.subject.ddc | 519 | en |
dc.title | Self-similar scaling limits of non-increasing Markov chains | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | We study scaling limits of non-increasing Markov chains with values in the set of non-negative
integers, under the assumption that the large jump events are rare and happen at rates that
behave like a negative power of the current state. We show that the chain starting from n and
appropriately rescaled, converges in distribution, as n → ∞, to a non-increasing self-similar
Markov process. This convergence holds jointly with that of the rescaled absorption time to the
time at which the self-similar Markov process reaches first 0.
We discuss various applications to the study of random walks with a barrier, of the number
of collisions in Λ-coalescents that do not descend from infinity and of non-consistent regenerative
compositions. Further applications to the scaling limits of Markov branching trees are developed
in the forthcoming paper [1 1]. | en |
dc.relation.isversionofjnlname | Bernoulli | |
dc.relation.isversionofjnlvol | 17 | |
dc.relation.isversionofjnlissue | 4 | |
dc.relation.isversionofjnldate | 2011 | |
dc.relation.isversionofjnlpages | 1217-1247 | |
dc.relation.isversionofdoi | http://dx.doi.org/10.3150/10-BEJ312 | |
dc.identifier.urlsite | http://arxiv.org/abs/0909.3764v1 | en |
dc.description.sponsorshipprivate | oui | en |
dc.relation.isversionofjnlpublisher | Bernoulli Society | en |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |