
A Modica-Mortola Approximation for Branched Transport and Applications
Oudet, Edouard; Santambrogio, Filippo (2011), A Modica-Mortola Approximation for Branched Transport and Applications, Archive for Rational Mechanics and Analysis, 201, 1, p. 115-142. http://dx.doi.org/10.1007/s00205-011-0402-6
View/ Open
Type
Article accepté pour publication ou publiéDate
2011Journal name
Archive for Rational Mechanics and AnalysisVolume
201Number
1Publisher
Springer
Pages
115-142
Publication identifier
Metadata
Show full item recordAbstract (EN)
The M α energy which is usually minimized in branched transport problems among singular one-dimensional rectifiable vector measures is approximated by means of a sequence of elliptic energies defined on more regular vector fields. The procedure recalls the one of Modica-Mortola related to the approximation of the perimeter. In our context, the double-well potential is replaced by a concave term. The paper contains a proof of Γ−convergence and numerical simulations of optimal networks based on that previous result.Subjects / Keywords
branched transport; Gamma-convergence; Steiner problemRelated items
Showing items related by title and author.
-
Métivier, Ludovic; Brossier, Romain; Mérigot, Quentin; Oudet, Edouard; Virieux, Jean (2016) Article accepté pour publication ou publié
-
Santambrogio, Filippo (2010) Article accepté pour publication ou publié
-
Santambrogio, Filippo (2009) Communication / Conférence
-
Santambrogio, Filippo; Carlier, Guillaume; Galichon, Alfred (2010) Article accepté pour publication ou publié
-
Carlier, Guillaume; Santambrogio, Filippo; de Pascale, Luigi (2010) Article accepté pour publication ou publié