Show simple item record

dc.contributor.authorOudet, Edouard
dc.contributor.authorSantambrogio, Filippo
dc.date.accessioned2011-10-13T11:43:21Z
dc.date.available2011-10-13T11:43:21Z
dc.date.issued2011
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/7207
dc.language.isoenen
dc.subjectbranched transporten
dc.subjectGamma-convergenceen
dc.subjectSteiner problemen
dc.subject.ddc519en
dc.titleA Modica-Mortola Approximation for Branched Transport and Applicationsen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenThe M α energy which is usually minimized in branched transport problems among singular one-dimensional rectifiable vector measures is approximated by means of a sequence of elliptic energies defined on more regular vector fields. The procedure recalls the one of Modica-Mortola related to the approximation of the perimeter. In our context, the double-well potential is replaced by a concave term. The paper contains a proof of Γ−convergence and numerical simulations of optimal networks based on that previous result.en
dc.relation.isversionofjnlnameArchive for Rational Mechanics and Analysis
dc.relation.isversionofjnlvol201en
dc.relation.isversionofjnlissue1en
dc.relation.isversionofjnldate2011
dc.relation.isversionofjnlpages115-142en
dc.relation.isversionofdoihttp://dx.doi.org/10.1007/s00205-011-0402-6en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherSpringeren
dc.subject.ddclabelProbabilités et mathématiques appliquéesen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record