Eigenvalues for Radially Symmetric Fully Nonlinear Operators
Esteban, Maria J.; Felmer, Patricio; Quaas, Alexander (2010), Eigenvalues for Radially Symmetric Fully Nonlinear Operators, Communications in Partial Differential Equations, 35, 9, p. 1716-1737. http://dx.doi.org/10.1080/03605301003674848
Type
Article accepté pour publication ou publiéExternal document link
http://arxiv.org/abs/0908.1060v1Date
2010Journal name
Communications in Partial Differential EquationsVolume
35Number
9Publisher
Taylor & Francis
Pages
1716-1737
Publication identifier
Metadata
Show full item recordAbstract (EN)
In this paper we present an elementary theory about the existence of eigenvalues for fully nonlinear radially symmetric 1-homogeneous operators. A general theory for first eigenvalues and eigenfunctions of 1-homogeneous fully nonlinear operators exists in the framework of viscosity solutions. Here we want to show that for the radially symmetric operators or in the one dimensional case a much simpler theory, based on ode and degree theory arguments, can be established. We obtain the complete set of eigenvalues and eigenfunctions characterized by the number of zeroes.Subjects / Keywords
Fully nonlinear equation; Fully nonlinear operator; Multiple eigenvalues; Principal eigenvalue; Radially symmetric solutionsRelated items
Showing items related by title and author.
-
Superlinear elliptic equation for fully nonlinear operators without growth restrictions for the data Quaas, Alexander; Felmer, Patricio; Esteban, Maria J. (2010) Article accepté pour publication ou publié
-
Quaas, Alexander; Felmer, Patricio; Esteban, Maria J. (2007) Article accepté pour publication ou publié
-
Quaas, Alexander; Esteban, Maria J.; Busca, Jérôme (2005) Article accepté pour publication ou publié
-
Felmer, Patricio; Dolbeault, Jean (2004) Article accepté pour publication ou publié
-
Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2000) Article accepté pour publication ou publié