Eigenvalues for Radially Symmetric Fully Nonlinear Operators
dc.contributor.author | Esteban, Maria J.
HAL ID: 738381 ORCID: 0000-0003-1700-9338 | |
dc.contributor.author | Felmer, Patricio | |
dc.contributor.author | Quaas, Alexander | |
dc.date.accessioned | 2011-10-14T08:45:22Z | |
dc.date.available | 2011-10-14T08:45:22Z | |
dc.date.issued | 2010 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/7217 | |
dc.language.iso | en | en |
dc.subject | Fully nonlinear equation | en |
dc.subject | Fully nonlinear operator | en |
dc.subject | Multiple eigenvalues | en |
dc.subject | Principal eigenvalue | en |
dc.subject | Radially symmetric solutions | en |
dc.subject.ddc | 515 | en |
dc.title | Eigenvalues for Radially Symmetric Fully Nonlinear Operators | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | In this paper we present an elementary theory about the existence of eigenvalues for fully nonlinear radially symmetric 1-homogeneous operators. A general theory for first eigenvalues and eigenfunctions of 1-homogeneous fully nonlinear operators exists in the framework of viscosity solutions. Here we want to show that for the radially symmetric operators or in the one dimensional case a much simpler theory, based on ode and degree theory arguments, can be established. We obtain the complete set of eigenvalues and eigenfunctions characterized by the number of zeroes. | en |
dc.relation.isversionofjnlname | Communications in Partial Differential Equations | |
dc.relation.isversionofjnlvol | 35 | en |
dc.relation.isversionofjnlissue | 9 | en |
dc.relation.isversionofjnldate | 2010 | |
dc.relation.isversionofjnlpages | 1716-1737 | en |
dc.relation.isversionofdoi | http://dx.doi.org/10.1080/03605301003674848 | en |
dc.identifier.urlsite | http://arxiv.org/abs/0908.1060v1 | en |
dc.description.sponsorshipprivate | oui | en |
dc.relation.isversionofjnlpublisher | Taylor & Francis | en |
dc.subject.ddclabel | Analyse | en |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |