Convergence of capillary fluid models: from the non-local to the local Korteweg model
Haspot, Boris; Charve, Frédéric (2011), Convergence of capillary fluid models: from the non-local to the local Korteweg model, Indiana University Mathematics Journal, 60, 6, p. 2021-2060. http://dx.doi.org/10.1512/iumj.2011.60.4600
Type
Article accepté pour publication ou publiéExternal document link
http://arxiv.org/abs/1101.2398v1Date
2011Journal name
Indiana University Mathematics JournalVolume
60Number
6Publisher
Indiana University
Pages
2021-2060
Publication identifier
Metadata
Show full item recordAbstract (EN)
In this paper we are interested in the barotropic compressible Navier-Stokes system endowed with a non-local capillarity tensor depending on a small parameter Epsilon such that it heuristically tends to the local Korteweg system. After giving some physical motivations related to the theory of non-classical shocks (see [28]) we prove global well-posedness (in the whole space Rd w ith d ≥ 2) for the non-local model and we also prove the convergence, as Epsilon goes to zero, to the solution of the local Korteweg system.Subjects / Keywords
Navier–Stokes system; Korteweg systemRelated items
Showing items related by title and author.
-
Charve, Frédéric; Haspot, Boris (2013) Article accepté pour publication ou publié
-
Haspot, Boris; Charve, Frédéric (2013) Article accepté pour publication ou publié
-
Haspot, Boris (2010) Article accepté pour publication ou publié
-
Haspot, Boris (2011) Article accepté pour publication ou publié
-
Haspot, Boris; Charve, Frédéric (2012) Article accepté pour publication ou publié