Critical points of the optimal quantum control landscape: a propagator approach
Ho, Tak-San; Rabitz, Herschel; Turinici, Gabriel (2012), Critical points of the optimal quantum control landscape: a propagator approach, Acta Applicandae Mathematicae, 118, 1, p. 49-56. http://dx.doi.org/10.1007/s10440-012-9677-3
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00630263/fr/Date
2012Journal name
Acta Applicandae MathematicaeVolume
118Number
1Publisher
Springer
Pages
49-56
Publication identifier
Metadata
Show full item recordAbstract (EN)
Numerical and experimental realizations of quantum control are closely connected to the properties of the mapping from the control to the unitary propagator. For bilinear quantum control problems, no general results are available to fully determine when this mapping is singular or not. In this paper we give suffcient conditions, in terms of elements of the evolution semigroup, for a trajectory to be non-singular. We identify two lists of "way-points" that, when reached, ensure the non-singularity of the control trajectory. It is found that under appropriate hypotheses one of those lists does not depend on the values of the coupling operator matrix.Subjects / Keywords
landscape analysis in quatum control; quantum control; singular controlRelated items
Showing items related by title and author.
-
Ohtsuki, Yukiyoshi; Teranishi, Yoshiaki; Saalfrank, Peter; Turinici, Gabriel; Rabitz, Herschel (2007) Article accepté pour publication ou publié
-
Rabitz, Herschel; Ramakhrishna, Viswanath; Turinici, Gabriel; Li, Baiqing (2002) Article accepté pour publication ou publié
-
Rabitz, Herschel; Li, Baiqing; Ramakhrishna, Viswanath; Turinici, Gabriel (2003) Article accepté pour publication ou publié
-
Turinici, Gabriel; Rabitz, Herschel (2010) Article accepté pour publication ou publié
-
Brown, Eric; Turinici, Gabriel; Rabitz, Herschel (2003) Chapitre d'ouvrage