• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Aide
  • Connexion
  • Langue 
    • Français
    • English
Consulter le document 
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Afficher

Toute la baseCentres de recherche & CollectionsAnnée de publicationAuteurTitreTypeCette collectionAnnée de publicationAuteurTitreType

Mon compte

Connexion

Enregistrement

Statistiques

Documents les plus consultésStatistiques par paysAuteurs les plus consultés
Thumbnail - No thumbnail

Critical points of the optimal quantum control landscape: a propagator approach

Ho, Tak-San; Rabitz, Herschel; Turinici, Gabriel (2012), Critical points of the optimal quantum control landscape: a propagator approach, Acta Applicandae Mathematicae, 118, 1, p. 49-56. http://dx.doi.org/10.1007/s10440-012-9677-3

Type
Article accepté pour publication ou publié
Lien vers un document non conservé dans cette base
http://hal.archives-ouvertes.fr/hal-00630263/fr/
Date
2012
Nom de la revue
Acta Applicandae Mathematicae
Volume
118
Numéro
1
Éditeur
Springer
Pages
49-56
Identifiant publication
http://dx.doi.org/10.1007/s10440-012-9677-3
Métadonnées
Afficher la notice complète
Auteur(s)
Ho, Tak-San
Rabitz, Herschel
Turinici, Gabriel cc
Résumé (EN)
Numerical and experimental realizations of quantum control are closely connected to the properties of the mapping from the control to the unitary propagator. For bilinear quantum control problems, no general results are available to fully determine when this mapping is singular or not. In this paper we give suffcient conditions, in terms of elements of the evolution semigroup, for a trajectory to be non-singular. We identify two lists of "way-points" that, when reached, ensure the non-singularity of the control trajectory. It is found that under appropriate hypotheses one of those lists does not depend on the values of the coupling operator matrix.
Mots-clés
landscape analysis in quatum control; quantum control; singular control

Publications associées

Affichage des éléments liés par titre et auteur.

  • Vignette de prévisualisation
    Monotonically convergent algorithms for solving quantum optimal control problems described by an integrodifferential equation of motion 
    Ohtsuki, Yukiyoshi; Teranishi, Yoshiaki; Saalfrank, Peter; Turinici, Gabriel; Rabitz, Herschel (2007) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Optimal Dynamic Discrimination of Similar Molecules Through Quantum Learning Control 
    Rabitz, Herschel; Ramakhrishna, Viswanath; Turinici, Gabriel; Li, Baiqing (2002) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Optimal discrimination of multiple quantum systems: controllability analysis 
    Rabitz, Herschel; Li, Baiqing; Ramakhrishna, Viswanath; Turinici, Gabriel (2003) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Multi-polarization quantum control of rotational motion through dipole coupling 
    Turinici, Gabriel; Rabitz, Herschel (2010) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Control of Quantum Dynamics: Concepts, Procedures and Future Prospects 
    Brown, Eric; Turinici, Gabriel; Rabitz, Herschel (2003) Chapitre d'ouvrage
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Tél. : 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo