Show simple item record

dc.contributor.authorHo, Tak-San
dc.contributor.authorRabitz, Herschel
dc.contributor.authorTurinici, Gabriel
HAL ID: 16
ORCID: 0000-0003-2713-006X
dc.date.accessioned2011-10-19T14:36:17Z
dc.date.available2011-10-19T14:36:17Z
dc.date.issued2012
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/7257
dc.language.isoenen
dc.subjectlandscape analysis in quatum controlen
dc.subjectquantum controlen
dc.subjectsingular controlen
dc.subject.ddc520en
dc.titleCritical points of the optimal quantum control landscape: a propagator approachen
dc.typeArticle accepté pour publication ou publié
dc.contributor.editoruniversityotherChemistry Department http://www.princeton.edu/chemistry/index.xml Princeton University;États-Unis
dc.description.abstractenNumerical and experimental realizations of quantum control are closely connected to the properties of the mapping from the control to the unitary propagator. For bilinear quantum control problems, no general results are available to fully determine when this mapping is singular or not. In this paper we give suffcient conditions, in terms of elements of the evolution semigroup, for a trajectory to be non-singular. We identify two lists of "way-points" that, when reached, ensure the non-singularity of the control trajectory. It is found that under appropriate hypotheses one of those lists does not depend on the values of the coupling operator matrix.en
dc.relation.isversionofjnlnameActa Applicandae Mathematicae
dc.relation.isversionofjnlvol118
dc.relation.isversionofjnlissue1
dc.relation.isversionofjnldate2012
dc.relation.isversionofjnlpages49-56
dc.relation.isversionofdoihttp://dx.doi.org/10.1007/s10440-012-9677-3
dc.identifier.urlsitehttp://hal.archives-ouvertes.fr/hal-00630263/fr/en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherSpringeren
dc.subject.ddclabelSciences connexes (physique, astrophysique)en


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record