Attractors for a non-linear parabolic equation modelling suspension flows
Gimenez, Angel; Catto, Isabelle; Amigo, M. Jose; Valero, Jose (2009), Attractors for a non-linear parabolic equation modelling suspension flows, Discrete and Continuous Dynamical Systems. Series B, 11, 2, p. 205-231. http://dx.doi.org/10.3934/dcdsb.2009.11.205
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00359702/en/Date
2009Journal name
Discrete and Continuous Dynamical Systems. Series BVolume
11Number
2Publisher
Southwest Missouri State University Dept. of Mathematics
Pages
205-231
Publication identifier
Metadata
Show full item recordAbstract (EN)
In this paper we prove the existence of a global attractor with respect to the weak topology of a suitable Banach space for a parabolic scalar differential equation describing a non-Newtonian flow. More precisely, we study a model proposed by Hébraud and Lequeux for concentrated suspensionsSubjects / Keywords
Non-Newtonian fluids; set-valued dynamical system; global attractorRelated items
Showing items related by title and author.
-
Catto, Isabelle; Cancès, Eric; Gati, Yousra (2005) Article accepté pour publication ou publié
-
Repeated games for non-linear parabolic integro-differential equations and integral curvature flows Serfaty, Sylvia; Imbert, Cyril (2011) Article accepté pour publication ou publié
-
Juengel, Ansgar; Gentil, Ivan; Dolbeault, Jean; Carrillo, José A. (2006) Article accepté pour publication ou publié
-
Gati, Yousra; Catto, Isabelle; Cancès, Eric; Le Bris, Claude (2005) Article accepté pour publication ou publié
-
Mazari, Idriss; Nadin, Grégoire (2022) Document de travail / Working paper