
Representation of the polar cone of convex functions and applications
Lachand-Robert, Thomas; Carlier, Guillaume (2008), Representation of the polar cone of convex functions and applications, Journal of Convex Analysis, 15, 3, p. 535-546
View/ Open
Type
Article accepté pour publication ou publiéDate
2008Journal name
Journal of Convex AnalysisVolume
15Number
3Publisher
Heldermann Verlag
Pages
535-546
Metadata
Show full item recordAbstract (EN)
Using a result of Y. Brenier [Comm. Pure Appl. Math. 44 (1991) 375--417] we give a representation of the polar cone of monotone gradient fields in terms of measure-preserving maps, or bistochastic measures. Some applications to variational problems subject to a convexity constraint are givenSubjects / Keywords
Convexity constraint; Euler-Lagrange equation; measure-preserving maps; bistochastic measuresRelated items
Showing items related by title and author.
-
Carlier, Guillaume; Lachand-Robert, Thomas; Maury, Bertrand (2001) Article accepté pour publication ou publié
-
Carlier, Guillaume; Friesecke, Gero; Vögler, Daniela (2022) Article accepté pour publication ou publié
-
Mirebeau, Jean-Marie (2016) Article accepté pour publication ou publié
-
Carlier, Guillaume; Santambrogio, Filippo; de Pascale, Luigi (2010) Article accepté pour publication ou publié
-
Fenchel-Young inequality with a remainder and applications to convex duality and optimal transport Carlier, Guillaume (2022) Document de travail / Working paper